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Abstract—We propose a Monte Carlo approach to attain suffi-
cient training data, a splitting method to improve effectiveness, and
a system composed of parallel decision trees (DTs) to authenticate
users based on keystroke patterns. For each user, approximately
19 times as much simulated data was generated to complement the
387 vectors of raw data. The training set, including raw and simu-
lated data, is split into four subsets. For each subset, wavelet trans-
forms are performed to obtain a total of eight training subsets for
each user. Eight DTs are thus trained using the eight subsets. A
parallel DT is constructed for each user, which contains all eight
DTs with a criterion for its output that it authenticates the user
if at least three DTs do so; otherwise it rejects the user. Training
and testing data were collected from 43 users who typed the exact
same string of length 37 nine consecutive times to provide data for
training purposes. The users typed the same string at various times
over a period from November through December 2002 to provide
test data. The average false reject rate was 9.62% and the average
false accept rate was 0.88%.

Index Terms—Biometrics, computer security, keystroke pat-
terns, Monte Carlo methods, network security, parallel decision
trees, simulations, wavelet analysis.

I. INTRODUCTION

GREAT efforts have been expended on the security of com-
puter systems and networks, such as improving hardware

and software reliability, preventing the proliferation of viruses,
developing more secure access control, etc. One of the most ac-
tive fields in computer security research is developing more se-
cure authentication methods for user access.

Currently, there are three different types of authentication
methods: those involving objects, knowledge, and biometrics.
Of these, a biometric approach is the most secure and conve-
nient authentication tool. Sometimes, the biometric method is
split into two subcategories: those involving actions and those
involving physiology [1]. Since most biometrics need specially
designed devices to measure users’ unique physical or behav-
ioral characteristics, the authentication based on keystroke pat-
terns becomes the cheapest.

Any research on identity authentication using keystroke pat-
terns is based on the argument that for a regularly typed string,
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the user’s characteristics shown in the form of keystroke press
and release times can be quite consistent and unique [2]–[6].
There have been many attempts to apply statistical and some ar-
tificial intelligence techniques to authentication using keystroke
patterns. However, the problem is still open, since no one has
proposed a well-accepted approach. The difficulty is due to the
dilemma of satisfying and/or balancing the following factors:

• Effectiveness. Two criteria are generally used to gauge
the effectiveness of an approach [7]. One is called false
accept rate (FAR) which is how often a wrong user is
authenticated. The other is called false reject rate (FRR)
which is how often the legitimate user is not accepted. In
practice, FRR tends to increase when one tries to decrease
FAR, and vice versa.

• Efficiency. This metric indicates whether the method is
computationally expensive. The complexity of the algo-
rithm is usually calculated for this purpose.

• Adaptability and robustness. Since almost all research has
used keystroke patterns collected during a fixed training
period, it remains a challenge to make the method adap-
tive to changing typing patterns. The method also needs to
be adaptive to turnover of users and to diversity of users,
such as clerical professionals, handymen, etc.

• Convenience. The approach should make users feel com-
fortable. It will not be widely accepted if the user needs
to type a lengthy string, memorize something difficult, or
type a short string many times.

[1], [2], [4], [8]–[10] have used keystroke patterns collected
over a period of time to authenticate users. Almost all of these
works use statistical techniques or calculation of variations for
user authentication. The work in [8] and [9] is for commercial
purposes and sufficient data is not readily available from their
studies. [10] proposes a method that uses partitions to split data
into cluster domains based on the typing speed. Then, a refer-
ence profile for each user in its domain is built. Finally, it imple-
ments an optimized classifier based on probabilistic measures
with an acceptance of authentic rate of 90%, which is equiva-
lent to an FRR of 10%. The work in [1] appears simple, and
the effectiveness of their approach is quite impressive. The au-
thors first build a mean reference signature for each user based
on eight sets of his keystroke patterns consisting of username,
password, first name, and last name. Then the norm of the dif-
ference between any test signature and the mean reference sig-
nature is calculated to determine if the user is legal based on
a predefined threshold. They reach an FRR of 16.67% and an
FAR of 0.25%.
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Fig. 1. Timestamps and keystroke feature representation.

[11] uses fuzzy algorithms to develop computer access se-
curity systems. [12] uses back-propagation models for weight
updates in neural networks (NNs) to train from sample data and
then classify a user. [13] compares the performance of almost all
widely used NN and pattern recognition algorithms, including
fuzzy ARTMAP, radial basis function networks, learning vector
quantization NN paradigms, back-propagation with a sigmoid
transfer function, hybrid sum-of-products, sum-of-products, po-
tential function, and Bayes’ rule algorithms. [10] points out the
problem of retraining every time a new user is introduced, and
the possibility that such retraining requirements may be prohib-
itively expensive. Some approaches divided the database into
smaller groups of subjects and then retrained the network.

Most of the above work is for static authentication, similar
to logging in at the start of a session. [5] proposes a dynamic
method which can authenticate users over a period of typing.
This paper only concentrates on static authentication. Most
of the previous work applies a combination of biometrics and
knowledge, implying that username/password is still a part of
the authentication.

We propose a parallel decision tree (DT)-based method which
requires the user to pick his user name from an available user list
and to type a common short string for authentication. Each user
needs to provide nine samples of the same common string for
training purposes. Additional simulated data is generated from
the nine samples based on a well-accepted assumption that a
Gaussian distribution governs the features in the keystroke pat-
terns. For each user, eight DTs are trained using real and sim-
ulated data including features derived from wavelet transforms.
Once the training is done, a parallel DT for each user is con-
structed using those eight DTs. The criterion for the parallel DT
to authenticate a user is that at least three of its DTs approve.

The novelty of this paper is the combination of a Monte Carlo
(MC) method to generate additional training data together with
parallel DTs to solve an important biometric problem. Because
separate DTs are constructed for each user, it may be possible to
add new users without reprogramming the entire authentication
system after the database has become sufficiently large. Com-
mercially available DT construction algorithms are fast and they
have a parameter to balance the tradeoff between FAR versus
FRR. The parallel DT method provides another mechanism for
adjusting the FAR versus FRR. The use of wavelet analysis for
feature extraction is shown to increase performance comparable
to the use of Fourier analysis. Experimental results in this study
are promising compared with other techniques in the literature.
The practical characteristics of the approach and the promising
experimental results suggest that the method could potentially
be used for other biometric authentication systems.

II. DATA COLLECTION AND PROCESSING

For any research involving pattern recognition techniques,
one should conduct an experiment to collect two sets of data.
One is for training or reference, and the other is for testing or
verification. From November to December 2002, an experiment
was conducted to collect reference and verification data from
43 users, mainly graduate students. Many of the students were
from foreign countries and not all of them knew the purpose of
the experiment. All participants had been using computers for
at least three years and some for over ten years.

Given a common string, namely, “master of science in com-
puter science”, each participant was required to provide nine
sets of reference keystroke patterns to set up his account. How-
ever, since users were only asked to provide verification data
at their own convenience, the number of verification keystroke
patterns provided by each user varied from 0 to 102 with a total
of 873 sets.

To collect data, a program with a friendly user interface,
coded in Microsoft Foundation Classes (MFC), was provided
to users. One can practice the common string as many times as
desired to get some degree of familiarity. Once the user decided
to provide his reference keystroke patterns, he was required to
type it nine consecutive times. This is more practicable than
collecting reference patterns over a period of time, since an
authentication system is unlikely to be accepted in the real
world if it requires a few weeks to set up an account for a user.

Note that no capital letters were used in the string, since a
user’s typing habits of capital letters varies. One may prefer
right-shift, left-shift, or caps lock to type letters in uppercases
which might lead to different keystroke sequences, whereas the
method requires all users to provide the same sequences of key-
strokes. Pressing “Delete” or “Backspace” forced the user to
type the string from the beginning.

For any event during the typing sequence, the MFC program
recorded its timestamp, such as key press time and key release
time. For any two consecutive letters typed, there are four times-
tamps associated with key press time of the first key , key
release time of the first key , key press time of the second
key , and key release time of the second key . The
features of these two keystrokes can be represented by all six
combinations of time differences of four timestamps, namely,

, , , ,
, and , as shown in Fig. 1 using an

example of “ma”.
Some features have well-known names, for instance, and
are called key press times, is called latency of key press

time, is called latency of key release time, etc. Note that
can be negative if the user pressed the second key before he
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Fig. 2. Structure of a DT for the 24th user (trained on raw data only).

released the first one. Of six features, only three are indepen-
dent, one can figure out the remaining three by applying addi-
tion or subtraction operations. In this paper, only , , and
are used as independent features in pattern recognition, since
our initial trials showed that including more dependent features
could not significantly improve the performance of the proposed
system. Moreover, not all ’s, ’s, and ’s were considered.
Spaces between words were discarded, as the user may pause
for recollection of what has to be typed next [3], [4].

A vector was built for each set of keystroke patterns, which
includes 32 key press times and 26 time-intervals between two
consecutive keys. For the common string used in the experiment,
the vector was constructed as below:

where the entries with one-letter subscripts represent key press
times corresponding to or . Entries with two-letter sub-
scripts represent time-intervals between successive key press
times similar to . To distinguish entries with the same sub-
script, , and are introduced to represent entries

, and , respectively. Since each entry represents a fea-
ture, the total number of features used to represent a user’s
keystroke pattern is 58, and each user had nine reference vectors
plus a variable number of verification vectors.

III. PATTERN RECOGNITION AND DECISION TREES

Since the method in [1] is relatively simple but effective, we
tried their approach. Using our reference vector in place of their
reference signature, we obtained an FRR of 37.0% and an FAR
of 7.72%, which are too large to be accepted. Apparently, our
vectors containing keystroke features of a common string do
not contain as much information as their signatures, which in-
clude keystroke latencies of username, password, first name, and
last name. Thus, their approach cannot be borrowed to solve
our problem. The approach we propose uses DTs and wavelet
transforms.

DTs are a type of learn-by-example pattern recognition tech-
nique and have been applied to many data mining problems.
Artificial NNs could also be used for a pattern recognition tool,
and are more general than DTs. NNs can associate their input
vectors with a continuous range of output values, whereas
DTs are only suited for classification problems having a small
number of output categories such as legal/illegal. However,
for problems applicable to both, our earlier research showed
that DTs usually require much less computation time for the
training than NNs do [14]. Even though this conclusion was
drawn from research on an electrical engineering problem, the
computational efficiency is a property that seems to generalize
across domains. This efficiency is helpful for the present ap-
plication, which is very computation intensive in the training
procedure. The on-line processing time, which corresponds to
the time needed to verify a user, of either an NN or a DT is
practically fixed and negligible.

A DT for a particular user was trained to recognize him as
the only legal user and all other users as illegal. Thus, only nine
raw cases out of 387 in each training data set have the desired
output as legal. A case refers to an input-output pair, which con-
tains an input vector along with the desired output, which is the
output the classifier is supposed to assign this input vector. To
quantify outputs, we let 1 indicate that the desired output for a
case is legal and let 0 indicate that the desired output for a case
is illegal. Each DT has a test set of data including 873 cases.
The number of cases having the desired output as 1 varies from
one user to another. The test cases for a user’s DT having 1 as
the desired output included all cases he provided for verifica-
tion regardless of the username he selected at the time. All the
remaining cases, namely, those provided by others for verifica-
tion, were assigned a desired output of 0 regardless of the user-
name they selected at the time. In actual implementation, the
user will have to select his own name in order to specify the DT
that is trained to recognize his pattern with an expected FRR of
9.62%. If he selects another username, then he can expect a re-
jection rate of .

The commercial DT software CART was used for training
DTs [15]. The CART software allows the user to specify some
parameters, such as relative misclassification costs and com-
plexity costs. The former allows the user to specify, for ex-
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ample, that it is two times worse to classify an illegal user as
a legal one than to make an error in the other direction. The
complexity cost allows the user to prevent DTs from having too
many nodes and over-fitting the training data. A classifier that
simply memorizes the data will probably not work well on new
test data. Using default parameters in training, we obtained an
FRR of 36.7% and an FAR of 3.25%. No significant improve-
ment was observed while trying different values of relative mis-
classification or complexity costs. Fig. 2 shows a DT obtained
for the 24th user containing four nodes and five leaves. To make
them meaningful, we converted outputs of 0’s and 1’s into “il-
legal” and “legal”, respectively. Note that the unit of values is
ms and a negative value indicates that a
key was pressed before its previous key was released.

IV. PARALLEL DECISION TREES

When a single DT solution cannot reach a certain level of
effectiveness for some problems, one can try parallel DTs. For
classification problems having two output categories like ours,
an effective parallel DT solution is based on probability theory.

Assume that the length of the input vector for the DT is n,
and that the output has two categories. The performance of the
DT is determined by the rate of success, p, which is defined as
the number of successfully classified cases divided by the total
number of cases. Since the output is either success or failure,
the rate of failure, q, is equal to . If the performance of
a DT is unacceptable, one can simply split the input vector of
length n into two subvectors each having length and train
two DTs. Given the rates of success of these two DTs, and ,
respectively, and the assumption that these two subvectors are
independent, one can figure the success rate of the parallel DT
as , if either subtree’s approval means
an approval for the parallel DT. If n is not too small, then neither

nor will be much less than p. Thus can be greater than
p. A very simple example can illustrate this property. Assume

, , and , then
. Similarly, one can try

splitting the original vector into four subvectors to construct a
parallel DT containing four DTs with a success rate of

, where is the success rate of the subvector.
For the present application, we need to consider both FRR and

FAR. Almost all previous researchers admit that it is not easy to
improve one while holding the other unchanged let alone to im-
prove both simultaneously. A method may be judged acceptable
if it can improve one rate a lot while sacrificing the other only
slightly.

We assume that the length of the original vector is and that it
has been split into subvectors of equal length to train separate
DTs. Let denote the DT’s FRR and denote its FAR,
where ranges from 1 to . Of DTs, it is very common that
some DTs output 1, and the others output 0. For this case, it is
necessary to combine these outputs into a single decision. Let
the parallel DT output 1 if at least of DT’s output 1, where

. For the parallel DT constructed by those DTs, its

theoretical FRR and FAR can be calculated using the following
equations:

(1)

where, in each equation, the second sum sign is only associated
with the number of additions needed to be performed which
is or . Here it denotes the sum adds all combinations
together. For example, assume that a parallel DT is constructed
by four DTs with FRRs of , , , , and FARs of , ,

, , respectively. Moreover, if we set the criterion that at least
one DT output of 1 will result in approval from the parallel DT,
then its theoretical FRR and FAR can be calculated

(2)

Theoretically, splitting approaches can be applied many
times. Thus, it seems that the classifier’s performance can
be improved steadily. However, more splitting means more
training, and the approach may not be accepted if the computa-
tion is too expensive. Moreover, the performance could not be
improved infinitely, since the assumptions for splitting methods
eventually do not hold when the length of the subvector is small
enough. For instance, a subvector may only contain less classi-
fiable features, the independence of subvectors may no longer
hold, etc. Therefore, in this application, the splitting methods
were only allowed to be applied up to three times, which means
at most eight subvectors can be obtained from splitting the
vector with length 58. Since the quotient of dividing 58 by 8
is not an integer, the proposed methodology splits it into eight
subvectors of roughly equal length.

Another important factor which needs to be considered is ,
which defines the minimum number of DTs required to output 1
in order for the parallel DT to approve a user. By reviewing pre-
vious research, we found that most proposed systems have larger
FRRs compared with their FARs. For instance, the method in [1]
reaches an FRR of 16.67% and an FAR of 0.25%; the approach
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in [6] obtains an FRR of 8.1% and an FAR of 2.8%; etc. Be-
cause our biometric approach could be combined with requiring
a user to remember a username, thus providing additional secu-
rity, our goal is to lower FRR while sacrificing a little bit of FAR.
Assuming the individual DTs have balanced FRR and FAR, we
can examine the implications of different thresholds for splitting
the feature vector one to three times.

• For two subvectors, the parallel DT will have balanced
FRR and FAR for . Since j cannot be chosen any
lower than this number, we select .

• For four subvectors, the parallel DTs will have balanced
FRR and FAR when . We select the next smaller
threshold, which is .

• For eight subvectors, the parallel DTs will have balanced
FRR and FAR when . We select the next smaller
threshold, which is .

In summary, we chose , where m
is the number of subvectors. Table I shows FRRs and FARs
for splitting the feature vector one to three times. Performance
was averaged over all users in order to make the evaluations
meaningful.

Observation of these FRRs and FARs shows that the conver-
gence of them is not as good as we expected. It seems that using
a parallel DT approach alone cannot solve our problem. Conse-
quently, we introduced an effective method for training set en-
hancement that is not new but has never been used in this area.

V. MONTE CARLO (MC) METHODS AND SIMULATIONS

The MC method is a widely used techniques in engineering
and science problems. Generally speaking, any research in-
volving the use of random numbers can be considered “Monte
Carlo”. MC methods have been used in computer science
for applications such as network traffic studies, parallel and
distributed computing, signal and image processing, etc. One
major application of MC methods is generating random cases
in simulation studies based on known/unknown probabilistic
distributions.

Since collecting more data may result in unacceptable incon-
venience or expense, or it may simply be unrealistic or impos-
sible, the effectiveness of pattern recognition solutions to many
problems can be limited by insufficient data. In our research,
nine sets of keystroke patterns were collected for training pur-
poses. Our system based solely on these data as described in the
previous section shows performance which could not match the
results of other researchers. One of the simplest ways to improve
performance is by asking users to provide more keystroke pat-
terns for training purposes. However, doing so is inconvenient.
Moreover, the number of sets needed for a particular perfor-
mance goal may reach an unacceptable or unrealistic level, such
as tens or hundreds of sets of data for each user. The method in
[16] requires an average number of 223 training patterns from
each user. [6]’ approach uses 30 sets of reference data. Thus,
we attempted to increase performance by generating a certain
amount of simulated keystroke patterns for each user.

Many previous researchers used the assumption that
keystroke features are governed by a Gaussian (normal)
distribution either explicitly or implicitly in their research [3],

TABLE I
COMPARISON OF FRRS AND FARS FOR ONE TO THREE SPLITTINGS

[5], [6], [10]. Generating simulated vectors each containing
58 features is also based on this assumption. For each user, a
mean reference vector, which is similar to the mean reference
signature proposed by [1], and a standard deviation reference
vector are first calculated. The approach, which is also similar
to the method for removal of outliers proposed by [1], includes
the following steps: First, the mean and standard deviation
are calculated for sample values of the features representing
each substring. Then, for each feature, the mean is compared
with the nine values of that feature and any outliers defined as
the datum whose value is beyond the mean three standard
deviations are discarded. Finally, for each feature, the mean and
standard deviation of the remaining values are calculated. This
process is repeated for each user to produce 43 pairs of mean
reference vectors and standard deviation vectors.

For each user, simulated data are then generated for each fea-
ture based on the mean and standard deviation of that feature.
Since most general-purpose programming languages only pro-
vide uniform random numbers, further transformation is needed
to produce Gaussian random numbers. Given a pair of indepen-
dent random numbers uniformly distributed in the interval of
[0,1), say and , two Gaussian random numbers with mean
of and standard deviation of , say and , can be calcu-
lated using

(3)

where represents the natural logarithm, which is the logarithm
having base e.

For each user, two random values are thus generated for each
feature. All the first random values for each feature were col-
lected into one vector and all the second random values into
another vector. Either of the vectors is called a simulated vector
to distinguish it from the nine reference vectors which are pro-
vided by the user. By generating more Gaussian random num-
bers, a certain number of simulated vectors are therefore created
for a user.

The performance of DTs is sensitive to the number of cases
representing each class. For example, a DT trained with a set in-
cluding 50 cases of output 1 and 50 cases of output 0 will have
a lower FRR than a DT trained with a set including 10 cases of
output 1 and 90 cases of output 0. When training a DT for a par-
ticular user, the cases representing his typing have the desired
output set to legal whereas the desired output for cases repre-
senting all other users are set to illegal. Without additional sim-
ulated data, the cases representing illegal users for constructing
an individual DT greatly outnumber the cases representing the
legal user. In order to balance the number of cases representing
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TABLE II
FRRS AND FARS OBTAINED FROM MONTE CARLO AND

PARALLEL DT METHODS

each class, the DT training set for each user includes his nine ref-
erence cases and 3771 simulated cases with output 1 plus 3780
cases with output 0. The cases with output 0 are from the other
42 users each contributing nine reference cases and 81 simu-
lated cases. Thus, 7560 cases were used to train each user’s DT.

Up to a point at which overtraining begins to occur, the per-
formance of a DT is somewhat correlated with the number of
nodes in it. Having more nodes means the DT extracts more
features in training, and hence attains better performance. For
example, the 24th user’s DT trained using both reference cases
and simulated cases has 24 nodes and 25 leaves which is too
large to display here. It is much more complicated than the one
shown in Fig. 2, which is only trained with reference cases.

Table II shows the results from the combination of MC and
parallel DT approaches. Compared with the pure parallel DT
method, a parallel DT method combined with MC simulations
can greatly decrease FARs while keeping FRRs still acceptable.
The results are promising because many applications can accept
a classifier with an FRR of 9.16% and an FAR of 1.44%. For
applications that require an FAR less than 1% while still keeping
the FRR less than 10%, it can still be reached with a little more
computation.

Table II shows the actual FRRs and FARs had more deviation
from theoretical predictions for larger numbers of splitting. This
trend results from fewer features in each subvector and from de-
creasing validity of the independence assumption. Both factors
can be overcome by lengthening the common string, but an ex-
cessive length may be difficult for users to accept. The indepen-
dence problem can also be overcome by representing the feature
values using a different set of basis vectors. In other words, we
can apply some transformation, such as wavelet transform.

VI. WAVELET ANALYSIS AND TRANSFORMS

Wavelet analysis [17] provides a countable infinite basis
for and in many wavelet systems the elements of this
basis are orthogonal to each other and normalized. The discrete
wavelet transform (DWT) uses a new finite basis to represent
discrete-time signals of a given length. The number of samples
limits the number of independent wavelet coefficients similar
to the discrete Fourier transform (DFT). For 16 samples, there
can be four levels and a total of 16 coefficients in the
wavelet decomposition. We applied the discrete-wavelet trans-
form after splitting the original sequence into four subvectors
of length 15, 14, 15, and 14, respectively, and padding with 0’s
to reach a length of 16 for each subvector. If { where

TABLE III
FRRS AND FARS OBTAINED FROM THE PARALLEL DT

CONTAINING EIGHT SUBVECTORS

to 15} are discrete-time samples, the Haar wavelet coefficients
can be calculated as

...

(4)

Each wavelet coefficient of a discrete signal can be calculated
as a weighted sum of samples in other wavelet systems as well.

For each case, let

represent the concatenation of all 16 coefficients from
performing wavelet decomposition on a subvector. After being
associated with its desired output, a case represented in a
different basis system is obtained. The wavelet decomposition
was performed for every case and eight DTs were trained for
each user: four DTs trained to process transformed subvectors
and four DTs trained to process untransformed subvectors.
Since the wavelet transform is linear and invertible, the
resulting vectors will be independent if the time-domain
vectors are independent. Table III shows the performance of
the parallel DT constructed with four original subvectors
and four wavelet subvectors. For comparison, we also
included a parallel DT with four original subvectors and
four Fourier coefficient subvectors.

Receiver operating characteristic (ROC) curves are a useful
technique for summarizing and visualizing the performance
of classifiers [7], [18]. Our proposed methodology provides
three different mechanisms for adjusting the tradeoff between
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TABLE IV
FARS AND (1-FRR)’S OBTAINED FROM PARALLEL DTS

TRAINED FROM EIGHT SUBVECTORS

Fig. 3. ROC curves.

the FAR and FRR metrics. CART software allows the spec-
ification of a relative misclassification cost. The number of
cases simulated for each class could also be used to adjust the
different error rates. We decided to vary the number of parallel
DTs required to agree on verifying a user in order to generate
ROC curves. Table IV shows FAR and (1-FRR) depending on
the number of concurring DTs required for verifying a user.
Comparative results are provided for schemes using DWT and
DFT transforms of subvectors.

Plotting 1-FRR versus FAR produces the ROC graphs shown
in Fig. 3. Fig. 3(a) indicates that all three curves are very close
to each other. For this application, we pay close attention to
the region of and , which is shown
in Fig. 3(b). It shows that either wavelet transform or Fourier
transform can improve the performance in this region because
of their higher curve positions.

An additional experiment was conducted to explore the
tradeoff between string size and accuracy. The size of the string
was reduced from 32 characters to eight characters by selecting
the substring “computer”. A parallel DT was constructed with
four original subvectors and four wavelet subvectors. An FRR
of 13.97% and an FAR of 9.19% were obtained. The results
show that a string size on the order of 30 characters is necessary
to attain an acceptable accuracy.

VII. ANALYSIS

The complexity of the training algorithm depends on the
number of characters in the common string, which is limited
for a practical application. Our string contains 37 characters
including spaces. Such a length is comparable to the length
in [1] of the combination of username, password, first name,
and last name. If an upper boundary is set for the length of the
common string, we can consider its length as constant. Thus,
the complexity of the wavelet decomposition is also constant.
The complexity of the training algorithm also depends on the
number of users, denoted n. The number of training cases deter-
mines the complexity of training DTs for a fixed-length input
vector. The number of cases for each DT equals .
The overall complexity for training is therefore for all
users where n represents the number of users. The initial setup
of the corresponding security systems is time consuming, as a
lot of users’ keystrokes need to be recorded and their classifiers
need to be built. The complexity is polynomial indicating that
the learning algorithm is efficient. The on-line calculation time
of four wavelet transforms and eight DT classifications is fixed
and negligible.

Once a sufficient number of typing samples have been col-
lected, it may not be necessary to retrain the entire system to
add new users. It could be sufficient to train only DTs specific
to new users. The verification for existing users would then be
as robust against false acceptance of new users as it would be
against false acceptance of nonusers. Having separate DTs for
individual users also makes it easier to update the system when
individual typing patterns change over time.

Our proposed approach shows promise for a purely biometric
authentication system based solely on keystroke patterns. The
method has an FRR of 9.62%, which means a legal user may be
denied once in ten logins, and an FAR of 0.88%, which means
the opportunity of an imposter attaining authorized is less than
1%. The convenience of this method is outstanding because a
user only needs to pick a username and type a given string of
length 30–40 nine times to set up his account. The user does not
even need to memorize any password or username for login.
What he needs to do is select his username from a list, type the
given string, and hit Enter.

VIII. CONCLUSION AND FUTURE WORK

A new technique for user authentication based on keystroke
patterns has been proposed. To attain sufficient data to train
more effective DTs, approximately 19 times as much simulated
data was generated in addition to the data provided by users. By
splitting the keystroke feature vectors, wavelet analysis was per-
formed on four 16-element subvectors and eight DT classifiers
were trained for every user. For each user, a parallel DT was con-
structed based on the eight DTs. The parallel DT accepts a user
as legal, if at least three DTs output 1. The training data, except
simulated data, were provided by 43 users, who each typed a
given common string of length 37, including spaces, nine con-
secutive times. The test data were provided by users without
any particular requirement. Since some users provided a small
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number of test samples, meaningful results were obtained by av-
eraging the performance over all users. Results of 9.62% FRR
and 0.88% FAR were obtained by rigorous testing.

Future work could include exploring the possibility that new
users could be added without retraining the entire system once
sufficient data has been collected. Future work could also in-
clude checking the generic significance of this methodology by
testing it on larger groups and by applying it to other biometric
authentication systems.
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