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he bootstrap is a powerful technique for assess- 
ing the accuracy of a parameter estimator in 
situations where conventional techniques are 
not valid. In this article we highlight the moti- 

vations for using the bootstrap in typical signal- 
processing applications and we give several practical ex- 
amples. Bootstrap methods for testing statistical Iiy- 
potheses arc described and we provide an analysis of the 
accuracy of bootstrap tests. We also discuss how die boot- 
strap can be used to estimate a variance-stabilizing trans- 
formation to define a pivotal statistic, and we 
demonstrate the use of the bootstrap for constructing 
confidence intervals for flight parameters in a passive 
acoustic emission problem. 

In many signal-processing applications one is interested 
in forming estimates of a certain number of unluiown pa- 
rameters of a random process, using a set of sample vd- 
ues. Further, one is interested in finding die sampling 
distribution of the estimators, so that the respective 
means, variances, and cumulants can be calculated, or in 
making some kind of probability statements with respect 
to the unknown true values of the parameters. For exam- 
ple, one could be interested in assigning two limits to a 
certain parameter, and in asserting that, with some speci- 
fied probability, the true value of the parameter will be 
situated between these limits, which constitute the 
so-called confidence interval [ 131. 

Most techniques for computing variances of parame- 
ter estimators or for setting confidence intervals for the OShock/Stock Imagery 
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true parameters assume that the size of the available set of 
sample values is sufficiently large, so that “asymptotic” re- 
sults can be applied. However, in most signal-processing 
problems this assumption cannot be made either because 
of t ime constraints o r  because the process is 
nonstationary and only small portions of stationary data 
are considered. Thus, often in practice, large sample 
methods are inapplicable. 

The bootstrap was introduced by Efron [ 15-18] as an 
approach to calculate confidence intervals for parameters 
in circumstances where standard methods cannot be ap- 
plied (see also [20]). An example of this would be one in 
which few data are available, so that approximate large 
sample methods are inapplicable. The bootstrap has sub- 
sequently been used to solve many other problems that 
would be too complicated for tradtional statistical analy- 
sis [21, 321. 

In simple words, the bootstrap does with a computer 
what the experimenter would do in practice, if it were 
possible: he or she would repeat the experiment. With the 
bootstrap, the observations are randomly reassigned, and 
the estimates recomputed. These assignments and re- 
computations are done thousands of times and treated as 
repeated experiments. 

The bootstrap is an extremely attractive tool in that it 
requires very little in the way of modeling, assumptions, 
or analysis, and it can be applied in an automatic way. The 
bootstrap is essentially a computer-based method that 
substitutes considerable amounts of computation in place 
of theoretical analysis. In an era of exponentially declining 
computational costs, such computer-intensive methods 
are becoming increasingly attractive. 

To illustrate the importance of the bootstrap in a sig- 
nal-processing context, consider the problem of estimat- 
ing the spectral density of a stationary random signal. The 
two main questions asked are: (1) what estimator should 
be used?, and (2), having decided to use a particular esti- 
mator, how accurate is it? The bootstrap is a methodol- 
ogy for answering the second question with very little 
assumption; for example, it does not assume that a large 
number of observations of the signal is available so as to 
use large sample results. Recent research has also been de- 
voted to question (1), i.e., the choice of an estimator 
among a family of estimators using the bootstrap [43]. 

Applications of bootstrap methods to real-life prob- 
lems have been reported in radar signal processing [48, 
491, sonar signal processing [6, 41, 45, 591, geophysics 
[2S-27, 631, biomedical engineering [38, 21, control 
[ 141, atmospheric environmental research [ 361, and vi- 
bration analysis [71]. In all these fields, bootstrap meth- 
ods have been used to approximate the distribution of an 
estimator or some of its characteristics. 

Nagaoka and Amai discuss in [48,49] an application 
in which the distribution of the estimated “close approach 
probability” is derived to be used as an index of collision 
risk in air traffic control. In [6], Bohme and Maiwald ap- 
ply bootstrap procedures to signal detection and location 

using sensor arrays in passive sonar. In [4S] the authors 
also analyze seismic data using the bootstrap. Krolik et al. 
[41] use bootstrap methods for evaluating the perform- 
ance of source localization methods on real sensor array 
data without precise a priori knowledge of true source po- 
sitions and the underlying data distribution. In [25-271 
Fisher and Hall apply the bootstrap to the problem of de- 
ciding whether or not paleomagnetic specimens sampled 
from a folded rock surface were magnetized before or af- 
ter folding occurred. They conclude that the bootstrap 
method provides the only feasible approach in this com- 
mon paleomagnetic problem. Another application in pa- 
leomagnetism has been reported in [ 631. In [ 381, Haynor 
and Woods use the bootstrap for estimating the regional 
variance in emission tomography images. Banga and 
Ghorbel [2] introduce a bootstrap sampling scheme to 
remove the dependence effect of pixels in retina images. 
Another application can be found in 1361, where Hanna 
uses the related jacldinife procedure and the bootstrap for 
estimating the confidence limits for air-quality models. 

Dejian and Guanrong [ 141 apply bootstrap techniques 
for estimating the distribution of the Lyapunov exponent 
of an unknown dynamic system using its time-series data. 
Zoubir and Bohme [71] apply bootstrap techniques to 
construct multiple hypotheses tests for finding optimal 
sensor locations for knock detection in spark ignition en- 
gines. Bootstrap techniques have been also applied to 
nonstationary data in [73] where Zoubir et al. use the 
bootstrap to determine confidence bounds for the instan- 
taneous frequency. More signal-processing applications 
of the bootstrap can be found in [60]. 

Recently, bootstrap techniques were also applied in 
the area of artificial neural networks. Tibshirani [66] dis- 
cusses a number of methods for estimating the standard 
error of predicted values from a multilayered perceptron. 
He found that the bootstrap methods perform best, 
partly because they capture variability due to the choice of 
starting weights. Bhide et al. [ 3 ]  demonstrate the use of 
bootstrap methods also in the context of an artificial neu- 
ral network to estimate a distillation process bottoms’ 
composition. 

This list is by no means complete and does not include 
applications of the jackknife, such as the work by Thom- 
son and Chave [ 641, where the authors approximate con- 
fidence intervals for spectra, coherences, and transfer 
functions for diverse geophysical data. 

Theoretical and practical work have shown that boot- 
strap methods are potentially superior to large-sample 
techniques. A danger, however, exists in that the practi- 
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tioner may well be attracted to applying bootstrap tech- 
niques in some circumstances where standard approaches 
that invoke strong assumptions are judged inappropri - 
ate-in such circumstances the bootstrap may also fail 
[67].  Special care is therefore required when applying the 
bootstrap in real-life situations [ 521. This article provides 
the fundamental concepts and methods needed by the sig- 
nal-processing practitioner to decide when and how to 
apply the bootstrap successfully. The theoretical basis of 
the bootstrap, its assumptions, and pitfalls are provided 
in Politis’ companion article that appears in this issue 
[ 521. This article considers the independent data boot- 
strap only and we shall modfy the bootstrap procedure to 
cater to dependent data models as is often done in practice 
[29, 72, 741. The dependent data bootstrap is omitted 
here but details and some applications can be found in 
[7,11,12,42,50,52,53,54,68].Thereaderinterested 
in only real-life application is advised to first read 
through the Principle and Variance Estimation subsec- 
tions of the Hypothesis Testing section, Example 3, and 
the Variance Stabilization section.Those specialists who 
are interested in the theoretical aspects of the bootstrap 
are encouraged to read the examples that are a natural 
follow up of Politis’ article. 

Bootstrap Methods 
Basic Principle 
Let X= { X ,  , X ,  ,.. . , X w }  be a sample, i.e., a collection of 
n numbers drawn at random from a completely unspeci- 
fied dstribution, F. By “at random” it is meant that the 
XI ’s are independent and identically distyibuted random 
variables, each having dstributionF. Let 6 denote an un- 
laown characteristic of F, such as its mean or variance. 
The problem considered in this article is to find the dstri- 
bution of 6, an estimator of 6, derived from the sample X. 
This is of great practical importance as we need to infer 6 
based on 6. For example, in a spectral estimation prob- 
lem, we could be interested in testing whether the spectral 
density at a given frequency is zero or whether it exceeds a 
certain bound from the estimate constructed from the ob- 
servations of the stationary process. 

A way to obtain the distribution of 6 or its characteris- 
tics is to repeat the experiment a sufficient number of times 
and approximate the dstribution of 6 by the so obtained 
empirical Qstribution. In many practical situations, this 
method is inapplicable for cost reasons or because the ex- 
perimental conditions are not reproducible. 

The bootstrap paradigm suggests that we resample 
from a distribution chosen to be close to F in some sens:, 
for example, the sample (or empirical) dstribution, F, 
that approaches F as “vz -+ -. The bootstrap principle is il- 
lustrated in Table l and in Fig. l. 

Note that the choice of 5 is not unique; any distribu- 
tion that approaches F as n + w can be used. This is of 
special interest if one has partial information on F. For ex- 
ample, if F is laown to be the normal distribution with 

A 1. The bootstrap principle for estimating a distribution function. 

unknown mean p and variance o , then we would draw a 
resample of size n from the normal distribution with 
mean and variance 3’ where 6 and o2  are estimated 
from X. With this method, known as thepavumetvzi boot- 
stsap [21, 321, one hopes to  improve upon the 
nonparametric bootstrap in which the resample, 
X’ = { X ;  , X i  , . . . ,X i } ,  is an unordered collection of a 
items drawn randomly from x with replacement, so that 
each Xr has probability n-l of being equal to any one of 
the X j  ’s, 

P(XZ” = X J X ) = n - l ,  l l i , j l n .  

That is, the Xr’s are independent and identically distrib- 
uted, conditional on X, with this Qstribution [ 321. This 

A 2. Histogram ofc’;,i;,...,c;ooo basedon the random sample x 

15.79). The solid line indicates the probabiliiy density function 
of a Gaussian variable with mean IO and variance 2.5. 

={-2,41, 4.86, 6.06,9.11, 10.20, 12.81, 13.17, 14.10, 15.77, 
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A 3. Histogram of 1000 bootstrap estimates of the mean of the 
t-distribution with four degrees of freedom. The solid line indi- 
cates the kernel probability density function obtained from 
1000 Monte Carlo simulations. 

means that x is lilcely to contain repeats. For example, 
when n = 4 the collection X* = {1.5,1.7,1.7, IS} should 
not be mistaken for the set {1.5,1.7,1.8} and, of course, X' 
is the same as {1.5,1.7,1.8,1.7}, {1.7,1.5,1.8,1.7}, etc. [21, 
321. In all the applications presented here, we shall use the 
nonparametric bootstrap. 

Examples 
Example 1.  Confidence interval for the mean 
Let X, , . . , , X ,  be n independent and identically distrib- 
uted random variables from some unknown distribution, 
and suppose we wish to find an estimator and a 
(1 - a)1000/o interval for the meanp. Usually, we estimate 
p by the sample mean 

x,+ ...+ x, r;= 
n 

A confidence interval for p can be found by determin- 
ing the distribution o f t  (over repeated samples of size n 
from the underlying distribution), and finding values 
p L,p Li such that 
A , .  

P(t 1, I p I t " )  = 1 -a. 

However, the distribution of depends on the distribu- 
tion of the Xi's, which is unknown. In the case where n is 
large the distribution of r; could be approximated by the 
normal distribution as per the central limit theorem [39, 
461, but such an approximation is not valid in applica- 
tions where n is small. 

The bootstrap paradgm suggests that we assume that 
the sample x = {X, , . . . , X , }  itself constitutes the under- 
lying distribution; then by resampling from xmany times 
and computing r; for each of these resamples, we get a 
bootstrap distribution for that approximates the actual 
distribution of t, and from which a confidence interval 
for p is derived. This procedure is described in Table 2, 
where a sample of size 10 is taken from the normal distri- 
bution with mean p = 10 and variance CJ = 25. The same 
data and algorithm of Table 2 were used with other a val- 
ues. We found the 99% confidence interval to be (4.72, 
14.07) and with only N = l o 0  resamples, we found 
(7.33, 12.93) to be the 90% confidence interval. 

We also ran the algorithm of Table 2 using a random 
sample of size 10 from the t-distribution with four de- 
grees of freedom. The histogram of the bootstrap esti- 
mates so obtained is shown in Fig. 3. As the theoretical fit 
in this case is not available, we compare the result with the 
smoothed empirical density function (kernel) based on 
1000 Monte Carlo replications. In this example we used 
the Gaussian kernel with the opt imum width 
h = 1.06N'-''5'6 ,, = 0.12, where 6 is the standard devia- 
tion of the estimates ofp, obtained through Monte Carlo 
replications [62]. The 95% confidence interval for p was 
found to be (-0.896,0.902) and (-0.886,0.887) basedon 
the bootstrap and Monte Carlo estimates, respectively. 

In practice, the procedure described in Table 2 can be 
substantially improved because the interval calculated is, 
in fact, an interval with coverage less than the nominal 
value [31]. Later in this article we shall dscuss another 
way for constructing confidence intervals for the mean 
that would lead to a more accurate result. The example 
here suffices to show the single steps of the bootstrap pro- 
cedure. The computational expense to calculate the confi- 
dence interval for p is approximately n times greater than 
the one needed to compute t. 

A reliable pseudo-random number generator is essen- 
tial for valid application of the bootstrap method. In all 
our applications, we used a pseudo-random number gen- 

Table 1. The bootstrap principle. 
1. Conduct the experiment to obtain the random sample x = {X, , X ,  , . . . , X , }  and calculate the estimate 8 from the sample X. 

2. Construct the empirical distribution, i?, which puts equal mass, 1 / n, at each observation', X ,  = x, ,X, = x2, .  . . , X ,  = x,. 

3. From the selected i?, draw a sample, X" = { X ; ,  X;, . . . , X:}, called the bootstrap (re)sample. 

4. Approximate the distribution of 8 by the distribution of 4" derived from x* .  

"In other words, the empirical distribution @is that probability measure that assigns to a set A in the sample space ofX a meas- 
ure equal to the proportion of sample values that lie in A. 
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erator proposed by Park andMiller [ 5 11, which is a built-in 
function in MATLAB'. A detailed treatment of pseudo- 
random number generators can be found in [ 8,401. 

Example 2. Variance estimation 
This example illustrates an application of the bootstrap 
for estimating the variance of the parameter of a first-or- 
der autoregressive (AR) time series. One may choose to 
use dependent-data bootstrap techniques to solve this 
problem. As we mentioned earlier, we shall adapt the in- 
dependent data bootstrap for this dependent-data model. 
We generate Tobservations, x, , t = 0,. . . , T - 1, from the 
first-order AR model 

where 2, is stationary white Gaussian noise with EZz = 0 
and auto-covariance function czz ( U )  = o ; ~ ( u ) ,  where6(u) 
is Kronecker's delta function, which is zero unless U = 0 
when 6(0) = 1, and a is a real number, satisfying I a1 < 1. Af- 
ter dctrending the data (replacingx, byx, - + ~ ~ ~ o i x ,  ), 

we fit the first-order AR model to the observation x, . 
With the empirical auto-covariance function of xt , 

r 1 T-lul-1 

we calculate the maximum-likelihood estimate of a, 

(3)  

which has approximate variance [ 561 

A 4. Histogram of C ? ~ , C ? ~ , . . . , C ? ~ , , ,  for an AR(1) process with pa- 
rameter a = -0.6. The solid line indicates the kernel probability 
density function obtained from 1000 Monte Carlo simulations. 

(4) 

It is necessary to assume normality of 2, for obtaining 
Eq. (4) [56]. We note, however, that under some regular- 
ity conditions an asymptotic formula for &?# can be found 
in the non-Gaussian case and is a function of a and the 
variance and kurtosis of 2, [30,55]. In Table 3 we show 
how we can approximate 62 without knowledge of the 
d.istribution of 2,. 

In an experiment we chose a = -0.6, T = 128 and, for 
comparative purposes, 2, to be Gaussian. The maximum 
likelihood estimate, derived from Eq. (3), was found to 
be & = -0.6351, and the standard deviation 6; = 0.0707, 
when applying Eq. (4). Using the procedure described in 

- 

Table 2. The bootstrap principle for calculating a confidence interval for the mean. 
Step 0. Expeyiment. Conduct the experiment. Suppose our sample is ~={-2.41, 4.86,6.06,9.11,10.20, 12.81, 13.17, 14.10, 

15.77, 15.79) of size 10, with fi = 9.946 being the mean of all values in X .  

Step 1. ResampliRa. Using a pseudo-random number generator, draw a random sample of 10 values, with replacement, from X. 
Thus, one might obtain the bootstyap resumple X"={9.11, 9.11, 6.06, 13.17, 10.20, -2.41,4.86, 12.81, -2.41,4.86}. 
Note that some of the original sample values appear more than once, and others not at all. 

Step 2 .  Calculation oj%e bootstrap esttmate. Calculate the mean of all values in x'. The mean of all 10 values in X' is@; = 6.54. 

Step 3. Repetition. Repeat Sceps 1 dnd 2 a large nuniber of times to obtain a total of n boorstrap estimates p;, . . . , piT.  For cxam- 
ple, let N = 1000. 

Step 4. Appyoximatioe of the distvibution of fi. Sort the bootstrap estimates into increasing order to obtainfi;,, 5 fi i2 ~ 5.. . 5 fi;,,,, ~, 
wherefi;,, is the h t h  smallest offi;, ... ,fik. For example, we might get 3.48, 3.39,4.46 ,..., 8.86, 8.88, 8.89 ,..., 10.07, 
10.08, ..., 14.46, 14.53, 14.66. Ahistogram ofthe obtained bootstrap estimatesfi;, ... ,fik is given in Fig. 2 alongwith 
the density function of the normal distribution with mean p. = 10 and variance d / n = 2.5. 

Step 5. Co.vzfideenceintervul.Thedesired(1 -a)100% bootstrapcoiifidenceintervalis(fi;,, ) , f i ;qz) ) ,  whereg, = LNa / 21is thein- 
teger part of Na / 2 and g2 = N - 4, + 1. For a = 0.05 and N = 1000, we get 4,  = 25 and g2 = 976, and the 95% confi- 
dence interval is found to be (6.27J3.19). 
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Table 3, we obtained the histogram of N = 1000 boot- 
strap estimates ofa, a ,  ,a , , . . . , alO,,, shown in Fig. 4. We 
then found an estimate of the standard deviation of i, 
6; = 0.0712, to be close to the theoretical value, si . For 
comparison purposes we also show in Fig. 4 the lierne1 
density estimator of i based on 1000 Monte Carlo simu- 
lations (solid line). The estimate of the standard deviation 
of i, Gi , in this case is found to be 0.0694. 

Notice that in the bootstrap procedure neither the as- 
sumption of Gaussian distribution for the noise process 
2, nor knowledge of any characteristic of the non- 
Gaussian distribution is necessary. The only assumption 
we made is that the variables 2, 2, , ... ,ZT-, are inde- 
pendently and identically distributed. 

Note also that we could have obtained 6; using the 
parametric bootstrap. Herein, we could also sample 
from a fitted normal distribution, i.e., a normal distribu- 
tion with mean zero and variance 6; = (1 - i )iF (0), in- 
stead of resampling from the residuals il , ;, , . . . , zT-l and 
performed the computation of $* from the so obtained 
resamples. We would have talien a similar approach to es- 
timate the variances and the covariances of the parameter 
estimates of an AR@) process, wherep is the order of the 
autoregressive time series. For more details on regression 
analysis using the bootstrap see [52]. 

A *  A *  ,.* 

Hypothesis Testing Using the Bootstrap 
Principle 
In this section, we shall discuss in detail the use of boot- 
strap techniques for hypotheses testing, a key element 
in many signal-processing applications such as radar 
and sonar. 

Consider a situation in which a random sample, 
x = { X ,  , . . . ,X,} ,  is observed from its unspecified prob- 
ability distribution, F. Let 6 denote an unknown charac- 
teristic of F.  We consider the problem of testing, for 
example, the hypothesis H: 6 5 6, against the alternative 
K 6 > 6,, where 6, is a given bound. Let 6 be an estima- 
tor of 6 and 6 an estimator of the variance CJ of 6. 

For testing H against K, we define the statistic 

The inclusion of the scale factor, 6, to be defined later, en- 
sures thatT is asymptotically pivotal as n -+ 00, i.e., the as- 
ymptotic distribution of T does not depend on any 
unknown parameter [34, 351. This means that we only 
need to deal with the appropriate standard dstribution 
rather than a whole family of distributions. 

If the distribution function G, say, of f under H, were 
@own, an exact a-level test would suggest to reject H if 
T 2 t,, where t, is determined byG(t,) = 1 - a [44]. For 
example, if F has mean p and unknown variance, 

1 -Tx. - U  
2 1 u  ,. n 2  

T =  , 

is used to test p 5 p, against p > p,, give? the random 
sample X = { X ,  X ,  , . . . ,X,}. For large n, T is asymptoti- 
cally t-distributed with n - 1 degrees of freedom. (If 2 
and x are independent random variables having a stan- 
dard normal distribution and a chi-square distribution of 
v degrees of freedom, respectively, then 2 / d- has a 
i-distribution of v degrees of freedom.) [39,44,46]. 

Two common problems can be encountered when 
solving a test problem. The first one is when the size ofthe 
random sample is small and asymptotic methods do not 
apply, such as in Example 1 discussed earlier. The second 

Table 3. The bootstrap principle for estimating the variance of the parameter estimate of an AR(1) process. 
Step 0. Experiment. Conduct the experiment and generate Tobservations x,, t = 0, . . . , T - 1, from a first-order AR process, X , .  

Step 1. Calculation of the residuals. Having estimated the parameter a from Eq. (3), define the residuals, it = x, + I ; .  xt-l, for 
t = 1 , 2  ,..., T-1. 

^ *  ^ *  Step 2. Resampliq. Create a bootstrap sample, xi, x;, . . . , x.;-~, by samplingsl*, z2,. . . , zT- ,, with replacement, from the residu- 
als s1,i2 , . . . , ZT- l, then letting x," = xo and xt* = -&,:, + it*, 

Step 3. Calculation ofthe bootstmp estimate. After centering the time series x," , x;, . . . , 
based on xi, x;, ... , x;-, rather than xo,xl, ... , xT-l. 

t = 1,2, . . . , T - 1. 

1, obtain i" from Eqs. (2) and (3) but 

,.* Step 4. Repetition. Repeat steps 2-3 a large number of times, say N = 1000, to obtain I;; ,  I ; ; , .  . . , aN.  

Step 5. Vaviance estimation. From i;,ii , .  . . , approximate the variance of i by 
62 =(N-l)-'CN 1 = i  (I;; -PEN *=i i $ " ) 2 ,  

an estimate of the variance of i * . 
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Table 4. The bootstrap principle for testing the hypothesis H : 6 5 6, against K: 6 > 6,. 
Step 0. Eqpcvimcnt. Conduct the experiment and collect the random data into the sample X = { X I , .  . . , X,}. 

Step 1. Resampli-vzg.. Using a pseudo-random number generator, draw a random sample, x', of the same size as X, with replace- 
ment, from X. 

Step 2 .  Calculation of the bootstyap statistic. From x*, calculate 

where 6 replacesa 6,, and 6* and 6" are versions of 8 and 6 computed in the same manner as 
with the resample X' replacing the sample X. 

Step 3. Repetition. Repeat steps 1 and 2 many times to obtain a total of n bootstrap statistics, ?;,Ti?,", . , . , T,. 
Step 4. Ranbin&. Rank the collection ?;, ?;, . . . , ?; into increasing order to obtain 

Step 5. Test. A bootstrap test has then the following form: reject H if? = ?&), where the choice ofM determines the level of 

and 6, respectively, but 

^ *  

^ *  
5 T(2, 5.. ' 5  ?&). 

significance of the test and is given by a = ( N  + 1 - M )  ( N  + l)-', where a is the iiomiiial level of significance [34]. 

'Note that the constant 6, has been replaced in Eq. (6) by the estimate of 6,&, derived from X. This is crucial if the test is 
to have good power properties. It is also important in the context ofthe accuracy of the level of the test [32,34,35], 

possible problem is that the distribution of the statistic 
used cannot be determined analpcally. One can overcome 
both problems when bootstrap teclmiques are used. 

The bootstrap approach for testing H: 6 2 6, against 
K: 6 > e,, given 8 and 6 (see the Variance Estimation 
section), derived from 4 is illustrated in Table 4. In the 
approach, we retain the asymptotically pivotal nature of 
the test statistic because the bootstrap approximation of 
the distribution o f f  is better than the approximation of 
the distribution of 6 [ 311. 

Note that in die case where one is interested in the hy- 
pothesis H: 6 = 6, against the two-sided alternative 
K: 6 + 6 , ,Athe procedure shown in Table 4 is still valid, ex- 
cept that 6- 6, is replaced byl& - 6,IinEq. (5) so that 
f is given by f = /$ - e,,/ / 6 and correspondingly 

f* = 6* -6, / 0 *  [34]. I ^  I 
Variance Estimation 
The tests described in Table 4 require the estimation of6  
and its bootstrap counterpart 6". In this section, we dis- 
cuss how one can use the bootstrap to achieve this. 

Suppose that X is a real-valued random variable with 
unlmown probability distribution F with mean p and 
variance . Let x = { X ,  X ,  , . . . , X , }  be a random sam- 
ple of size n from F. We wish to estimate p and assign to 
it a measure of accuracy. c,"=, X z  is a natural esti- 
mate for px, which has expectation px and variance 
(3 /a. The standard deviation of the sample mean, 6 x, is 
the square root of its variance and is tlie most common 
way of inlcating statistical accuracy. The standard devia- 
tion of amounts therefore to G /A. The mean value 
and standard deviation of 6 are exact but the usual as- 

The sample mean K , = 

sumption of normality of 6 
and is valid under general conditions on F as n grows. 

is an approximation only 

In this example, we could use 

to estimate G, = .,/E(X - p ), . This gives the estimate 
x* 

of the standard deviation of p x, 

In t h ~ s  particular example where & = x, the estimate of 
the standard deviation is just the usual estimate of the stan- 
dard deviation of F. However, for any estimate, &, other 
than the mean, there is no such neat formula that enables us 
to compute the numerical value of the ideal estimate exactly. 

The bootstrap can be used €or estimating the standard 
deviation of 6, it does not require any theoretical calcula- 
tion, and it is available no matter how mathematically 
complicated the estimate 6may be. The procedure to esti- 
mate 6, the standard deviation of 6, is given in Table 5 
[21, 32, 521. 

Ln the case of estimaungG*, we would proceed similarly 
as inTable 5, except that the procedure involves two nested 
levels of resampling. Herein, for each resample xi, 
b, = 1,. . . , B, we draw resamples xi*, b = 1,. .. , B, , evaluate 
13; from each resample to obtain B, replications, and cal- 
culate Eq. (9 ) ,  replacing&;, B by&;, andB, ,respectively. 

The jaclcknife [47, 521 is another technique for esti- 
mating the standard deviation. As an alternative to the 
bootstrap, the jacldinife method can be thought of as 
drawing n samples of size n - 1 each without replacement 
from the original sample of size n [47, 521. 
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Suppose y e  are given the sample x = { X ,  , . . . , X ,  } and 
an estimate, 6, from X. The jackknife method is based on 
the sample delete-one obsewation at a time, 

{ X ,  ,x, >. . . ,xi-l Y 
x(z) = , ... > X , )  

fori = 1,2,. .. , n, called the jackknife sample [21]. The ith 
jacldcnife sample consists of the data set with the ith ob- 
servation removed. For each ith j,acliknife sample, we cal- 
culate the ith jackknife estimate, of 6, iA= l , .  . . , n. The 
jackknife estimate of standard deviation of 6 is defined by 

The jaclknife is computationally less expensive if n is 
less than the number of replicates used by the bootstrap 
for standard deyiation estimation because it requires 
computation of 6 only for the n jackknife data sets. For 
example, if B = 25 resamples are necessary for standard 
deviation estimation with the bootstrap, and the sample 
size is n = 10, then clearly the jacldinife would be compu- 
tationally less expensive than the bootstrap. 

Examples 
This subsection illustrates some applications of the boot- 
strap to testing parameters in some statistical models. 

Example 3. Regression analysis 

In many signal-processing applications, we face the 
situation illustrated by Fig. 5, where an Y vector-valued 
stationary process, S, = (SI,,,, . . . ,SY,t )', is transmitted 
through a linear time-invariant system having an Y 
vector-valued impulse response, g, = (J,,,  , . . . ,J,,, )', 
where' denotes transpose. Assuming the linear system to 
be stable, the filtered signal is then buried in a stationary 
zero-mean noise process, E t ,  and received as a stationary 
process Z, ,  where E ,  and S, are assumed to be inde- 
pendent for any t = O,f1,+2,. .. . For the model of Fig. 5, 
we can write 

A 5. Multiple input/single output system. 

We denote the linear svstem's unknown transfer function 
byG(w)=(G,(w), ..., G, (a))'= xm g,e-j". 

The problem considered here is76Lswer the question 
of which element, G ,  (w), 1 5 1 I Y, is zero at a certain fre- 
quency, w. This would imply that 2, does not contain any 
information at w, contributed by the Zth signal compo- 
nent of s , ,  Sl , t ,  1 I: 1 I: Y. This situation occurs in many 
applications where one is interested in approximating a 
vector-valued time series by a version of itself plus noise, 
but restraining the new series to be of reduced dimension 
(in this case a scalar). Then, the problem is to detect chan- 
nels (frequency responses) that do have bandstop behav- 
ior at certain frequencies. 

A specific example is a situation where one is interested 
in findmg suitable vibration sensor positions to detect 
tool wear or breaks in a milling process. One would dis- 
tribute sensors on the spindle fixture and one sensor as a 
reference on the work piece, which would not be accessi- 
ble in a serial production. Based on observations of the vi- 
bration sensors, one would decide the suitability of a 
sensor position on the spindle fixture based on the struc- 
tural behavior of the furture at some given frequencies, 
which would have been assumed to be linear and time in- 
variant. This problem is currently resolved using heuristic 
arguments. A similar problem is discussed in [ 711. 

Another application in vertical seismic profiling re- 
quires a detailed knowledge of the filter constituted by the 
various layers constituting the vertical earth profile at a 
particular point in space. In such an application, waves are 

Table 5. The bootstrap principle for estimating the standard deviation of a parameter estimator. 
Step 0. Expe&"t. Conduct the experiment and collect the random data into the sample x = { X , ,  . . . , X J .  
Step 1. Resamplin,. Draw a random sample of size n, with replacement, frqm X. 
Step 2. Calculation oftbe bootstyap estimate. Evaluate the bootstrap estimate 6* from x' calculated in the same manner as 6 but 

with the resample x* replacing x. 
Step 3. Repetition. Repeat steps 1 and 2 many times to obtain a total of B bootstrap estimates, I?;, . . . , $;. Typical values for B 

are between 25 and 200. 
Step 4. Standavd deviation estimation of8. Estimate the standard deviation, 6, of $ by the sample standard deviation of the B 

bootstrap estimates, 
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Table 6. The bootstrap principle for the regression analysis example. 
Step 0. Expekment. Coiiducttheexperimentandcalculate~iefrequencydata,d, (a,l), . .. ,d, (CO, n), andd,(w,i), . _.  , d,(o, n).  

Step 1. Resamplinj. Conduct two totally independent resampling operations in which a random sample 
{dd;J(a,i) ,..., di(a,n)}, is  drawn, with replacement, from {ds(a,l) ,... ,dS(a,n)}, where 
d, (a, i )  = (dSl (a, i ) ,  . . . , dsv (a, i ) ) ,  i = 1, ... , n, and a resample, {di(a,l), ... , d;(a, a)},  is drawn, with replacement, 
from the randoin sample dl ( c o , ~ ) ,  . . . , di (CO, n), collected into die vector d, (a) = (di(a,l),  . . . , di (a, n))', so that 

d2 (a) = d, (a) - d, (a)G(a) 

are the residuals of die regression model (Eq. (12)). 
Step 2. Geneyation of boot:trap data. Center the frequency data resamples and compute 

d l  (CO) = dQ (a)G(a) + d (a). 
The joint distribution of {(d:(co,i),dl(a,i)),l 52 in}, conditional on ~ ( a )  ={(ds(a,i),dz(a,l)), ..., 
(d, (w, n), d,(w, n))}, is the bootstrap estimate of the unconditional joint distribution of ~ ( a ) .  

Step 3. CalcuZation ofbootstmp estimates. With the newdi (CO) andd:(o), calculateG" (a), using (14) but with the resamples d i  (CO) 
and d,"(a) replacing d, (a) and d, (a), respectively. 

Step 4. Calcuation of the bootstrap statistic. Calculate the statistic given in Eq. (15), replacing d, (a), ds,,, (a), d, (a), G(a), and 
G(')(a) by their bootstrap counterparts to yield 19- *(a). 

Step 5. Repetition. Repeat steps 1-4 a large number of times, say N,  to obtain ;;(a), .. . , $;(CO) 
Step 6. Distkbution estimation. Approximate the distribution of;(a), given in Eq. (15), by the distribution of;" (a) obtained. 

emitted in the ground that propagate through and reflect 
on the loptre,  which separate the various layers charac- 
terized by different acoustic impedances. The transmis- 
sion function for the range of relevant frequencies is of 
crucial importance, as the filter characteristics vary from 
location to location. Ihowledge of the frequency transfer 
function of the various earth-layers filter contributes to a 
proper inodeling of the earth surface, and then to a deci- 
sion as to the lildihood of the presence of gas and/or oil 
in a particular place. 

To test whether G, (a), 1 I 1 I I is zero, we would let 
G(a) = (G(') (a)', G, (a))', where G, (a) is an arbitrary fre- 
quency response that represents the transfer hiction of 
the filter that transforms the signal S,,, by time-invariant 
and linear operations, and G(') (a) = (G, (a), G, (a), ... , 
G,-, (CO),G'+~ (a), ..., G? (a))'is thevector oftransferfunc- 

A 6. Spectrum of S:'), obtained by averaging 20 periodograms. 

tions obtained from G(a) by deleting the component 
G, (a). Then, we test the hypothesis H:G, (a) = 0 (G(') (a) 
unspecified) against the two-sided alternative. 

Let S, and 2, be given for n independent observations 
oflength Teach. By talung the finite Fourier transform of 
both sides of Eq. (1 1), we obtain (omitting the error term 
0, (1), which is an error term that tends to zero almost 
surely as T + 00 [ 9 ] )  the complex regression 

d, (a) = d, (a)G(w) + d z (a) (12) 

wllereds(a)=(dsl  (a),...,dsr(a)), dsi (a )= (ds ,  ( ~ 4 ,  
... ,dsi (CO,%))', 
(a , a)  Y, and 

I = 1 ,... , T ,  d, (03) = (d, (03,l) ,... ,d, 

T -1 

d, (a,;) = w( t /T )  . Zt,ie-Jwt, i = 1 ,... , n, 
t = O  (13) 

is the normalized finite Fourier transform of the ith data 
block Zr,%, i = 1,. . . , n, of 2, and w(u) ,  U E R, is a smooth 
window that vanishes outside the interval [OJ]. 

Based on the observations of S, and Z, ,  for 
t =0,1, ..., T - 1, and i= 1 ,..., n, we first calculate the 
least-squares estimate of G(a), 

where Css (a) and CZs (0) are spectral densities obtained 
by averaging the corresponding periodograms over n 
independent data records, and denotes Hermitian 
operation. 

Conventional techniques assume the number of obser- 
vations, to be large so that the finite Fourier transform 
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d (a) becomes complex Gaussian [9]. Under this condi- 
tion and H, the statistic 

$(a) = (n - P") 

lidz (0) - ds,l, @w (a)/12 - 114 (a) - d, (4G(w)1/2 

is assumed to be F-distributed with 2 and2(n - Y) degrees 
of freedom (if x; and X: are independent random vari- 
ables having chi-square distributions ofv and v, degrees 
of freedom, respectively, then (x ," /VI )[( x /v ) has an 
F-dstribution with v1 and v2  degrees o freedom), where 

obtained from d, (a) = (d (a), d, (a)) by deleting the 
Ith vector dsi (a), and G?'))(a) = (d,,! (a)H dsci, (a))-' 

dscc (a) 

(ds,!i (a)H d z  (0)) [611. 

(a),..., d,,-i (aLd&+, (4> . . .>dSp  @))I is 

The hypothesis H is rejected at a level, a, if the statistic 
in Eq. (15) exceeds the (1 - a)% quantile of theF-distrib- 
ution. However, the use of the F-distribution in the case 
where d (a) is non-Gaussian is not valid. To find the dis- 
tribution of the statistic in Eq. (15) in the more general 
case, we could use a procedure based on the bootstrap de- 
scribed in Table 6 (for a more detailed discussion on the 
bootstrap for regression analysis, see [52]) .  

Note that several regression models are available and, 
dependmg upon which model the analysis is based, we 
have a different resampling procedure [32]. In the proce- 
dure described in Table 6, we assumed the pairs 
(d (a, i), d, (a, i)) to be independent and identically dis- 
tributed, with d, (a, i) and d, (a, i) independent. 

A 7. Frequency response of the first channel, C ,(a) obtained us- 
ing an FIR filter with 256 coefficients. 

An alternative bootstrap approach to the one de- 
scribed in Table 6 is based on the fact that Eq. (15) can be 
written as 

where 

are respectively the sample multiple coherence of 2, with 
S )'at 

eequency ,o. Her%in, the spectral- densities, C, (a), 

and Eq. (18) are obtained by averaging periodograms of 
n independent data records. 

s, and-% WithSIl' =(SI,, ,%,, >...> s s  l-l,, , /+I,,  

CZS(',  (01, c, (01, Cs.C'l,(i, (01, and c, (01, in Eq. (17) 

Table 7. Alternative bootstrap approach for the regression analysis example. 
Step 0. Expehzent. Conduct the experiment and calculate the frequencydata,d, (all), . . . , d, (a, n )  andd, (all), . . . , d, (a, n). 
Step 1. Resampling. Using a pseudo-random number generator, draw a random sample, x'(a) (ofthe same size), with replace- 

ment, from X(a) = {(ds (~,1) ,  dz (aJ)), . . . , (4 (a, %), 4 (0, .))>. 
Step 2. 
Step 3. Repetition. Repeat steps 1 and 2 many times to obtain a total of N bootstrap statistics, &;(a), . . . ,&; (a). 
Step 4. Distyibution estimation. Approximate the distribution of &(a), given in Eq. (16), by the so obtained bootstrap 

Calcdation of the bootswap statistic. From x*(o), calculate 6*(w), the bootstrap analogue of &(a) given by Eq. (16). 

distribution. 
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Alternatively to Table 6, we could proceed as de- 
scribed in Table 7 to estimate the distribution of $(a). 
The main difference with this approach compared to the 
previous one is that the resampling procedure does not 
tale into consideration the assumed complex regression 
model (Eq. (12)). 

The procedure described in Table 6 reflects the com- 
plex regression model (Eq. (12)) while the one described 
in Table 7 does not tale this model into account. It is 
worthwhile emphasizing that in practice bootstrap re- 
sampling should be performed to reflect the model char- 
acteristics. If we assume that the data is generated from 
the inodel in Eq. (12), we should use the method given in 
Table 6 to estimate the distribution of the test statistic. 
Resamplind from ~(a) will not necessarily generate data 
satisfying the assamed model. In our application, the re- 
gression model (Eq. (12)) is an approximation only and 
its validity is questionable in the case where the number of 
observations is small. Notice that Eq. (16) is a measure 
(see [71]) of the extent to which the signalS,,, contributes 
in 2, and can be derived heuristically, without use of Eq. 
(X), which is based on regression (Eq. (12)). 

Comparative studies of the two indicated resampling 
methods will show that bootstrapping the coherences as 
discussed in Table 7 gives similar test results as the ap- 
proach in Table 6. 

Simulation Results. We have simulated n = 20 inde- 
pendent records of a vector-valued signal, S, ,  with T = 5. 
The model used to generate a component, S I , $ ,  L = 1,. . . ,5, 
is as follows: 

Herein, Ab,l and are mutually independent 
random amplitudes and phases, respectively; a, are 
arbitrary resonance frequencies for b = 1, ... , I(; and 
UI,,  is a white noise process, 1 = 1, ... , Y. We have fixed 
IC = 4 and generated records of length T = 128 each, 
using a uniform distribution for both the phase and 
the amplitude on the interval [0,27c) and [0,1), re- 
spectively. We have chosen resonance frequencies at  
f, = 0.1, f, = 02, f, = 0.3, and f, = 0.4, all normalized, 
where f, =a, /2n,  h = 1 ,  ..., 4. We have then added 
uniformly distributed noise, U,,  to the generated sig- 
nal. A typical spectrum ofS,,, , L = 1, ... ,Y obtained by 
averaging 20 periodograms is depicted in Fig. 6. 

We then generated bandstop filters (FIR filters with 256 
coefficients) with bands centered about the four resonance 
frequencies, f, , f, , f, , and f, . As an example, the fre- 
quency response of the first filter, G, (a), is given in Fig. 7. 

We filtered S, and added independent uniformly dls- 
tributed noise, E,, to the filtered signal to generate 2,. 
The SNR of the output signal was 5 dB with respect to 
the component SI,$ with highest power. A plot of a spec- 
tral estimate of Z, ,  obtained by averaging 20 periodo- 
grams, is given in Fig. 8. 

A 8. Spectrum of Z,, obtained by averaging 20 periodograms. 
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A 9. Histogram of 1000 bootstrap values of the statistic 
(;*(a) - $(a)) / 6*(w), where ;(a) is given in fq. (151, at a fre- 

quency bin where the hypothesis H:G,(a) = 0 was retained. 

A 10. Histogram of 1000 bootstrap values of the statistic 
(;'(a) - $(a)) / o*(w), where ;(a) is given in €q, (161, at a fre- 

quency bin where the hypothesis H:C,(w) = 0 was retained. 



Table 8. The percentile4 bootstrap principle for calculating a confidence interval for the mean. 
Step 0. Experzment. Conduct the experiment and collect the random data into sample x = {X,, X ,  , . . . , X a } .  
Step 1. Pawmeter estimation. Based on x, calculate @, and 6,. 
Step 2. Resampling. Draw a random sample, X* of n values, with replacement, from X .  
Step 3. Calculation afthepivotalstatistic. Calculate the mean of all values in X* and using a nested bootstrap calculate 6*. Then, 

form A X  n 

..* CLx-Px 
P y =  A X  

whose distribution approximates the distribution of Eq. (20). 
Step 4. Repetition. Repeat steps 2 and 3 many times to obtain a total of N bootstrap estimates, 
Step 5. Ranking. Sortthe bootstrapestimatesintoincreasingordertoobtainfi;,(,, 2 fi;,(,, S . . .  S f i ~ , ~ l o o o ~ ,  wherefi:,(,, isthekth 

smallest offi;,l ,..., pLr,N. 
Step 6. Confidence interval. If (fi;,(q, j) is an interval containing (1 -a)N of the means @;, where q1 = LNa / 21 and 

q2 = N - q , + l , t h e n  

(21) 0 

A *  fi;,,,. . . , p, N. 

A X  

(22) 
n n x  

0; x - j ,I; x - 0 P Y , j q , ) )  

is a (1 - a)100% confidence interval for p x. 

We selected arbitrarily one transfer function, G, (a), 
I = 1,. . . , v, and tested H. Using the procedure of Table 4 
with 1000 and 30 bootstrap resamples for a quantile and 
variance estimate (see Table 5), respectively, we could re- 
ject H at a level of significance of 5% if o does not fall in 
the stopband; otherwise, we could retain H. In the simu- 
lations we have performed, with both methods described 
in Table 6 and Table 7, the level of significance obtained 
was never above the nominal value. 

Figures 9 and 10 show the bootstrap distribution of 
the statistic (6* (a) - $CO))/& * (a), using the proce- 
dures described in Table 6 and Table 7 ,  where e(o) is 
given by Eqs. (15) and (16), respectively. In this case, 
we tested H, :G, (a) = 0, against the two-sided alterna- 
tive, where o was taken to be the center frequency of 
the bandstop. With both methods, the hypothesis was 
retained. Another example is shown in Figs. 11 and 
12, where we tested H,: G, (o) = 0 and H, :G, (o) = 0 

H, :G,(o) = O  against two-sided alternatives at  a 
frequency outside and inside the bandstop, with the 
procedures of Table 6 and Table 7 ,  respectively. Here, 
again, both procedures (see Table 6 and Table 7) re- 
jected H, and accepted H ,, respectively. 

These examples have shown that it is possible to per- 
form tests in complicated situations but with minimal as- 
sumptions. In this situation, classical (EL) tests are only 
valid if the number of observations, T, is assumed to be 
large and asymptotic results for the finite Fourier trans- 
form [ 101 of stationary data hold. 

Note that in practice one is interested in perform- 
ing the above-discussed tests not only at one fre- 
quency bu t  a t  a set  of  mult iple  frequencies 
simultaneously. A discussion of bootstrap procedures 
to perform multiple tests can be found in [70]. A prac- 
tical application of the method described in Table 7 
was discussed in [ 711. 

A 1 1.  Histogram of 1000 bootstrap values of the statistic 
(;'(a) - $(w))6*(w) where $(a) is given in fq. (75), at a fre- 
quency bin where the hypothesis H: G, (w) = 0 was rejected. 

A 72. Histogram of 1000 bootstrap values of the statistic 
(;*(a) - $(w))6'(0) where ;(a) is given in fq. (16), at a fre- 
quency bin where the hypothesis H: G, (a) = 0 was retained. 
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Table 9. Procedure of the transformed percentile-t method. 
1. Transform the parameter estimate to a statistic for which a reasonably stable variance estimate is available. 
2. Use the percentile-t method to construct a (1 -a)100% confidence interval for the transformed parameter. 
3. Invert this interval into a (1 -a)100% confidence interval for the parameter of interest. 

Example 4. Confidence interval for the mean 
There is a well established duality between confidence in- 
tervals and hypothesis testing. If I is a confidence interval 
for an unluiown parameter, 6, with coverage probability 
a, then a l O O ( 1 -  a)% level test of, for example, the hy- 
pothesis H: 6 = 6, against K:  6 + 6, is to reject H if 
6, E I .  Thus, the issue of pivoting in the context of hy- 
pothesis testing also arises in the construction of confi- 
dence intervals using bootstrap methods. 

In this example, we consider the construction of a con- 
fidence interval for the mean as in Example I presented 
earlier. Let x = {XI , . . . ? X , }  be a random sample from 
some unknown distribution with mean p and variance 
0;. We wish to find an estimator of px with a 
(1 - a)100% confidence interval. Let and 6; be the 
sample mean and the sample variance of X, respectively. 
Alternatively to Example 1, we will base our method for 
findmg a confidence interval for 1-1 

PLY= ,. 

which asymptotically has a distribution that is free of un- 
linown parameters. In Eq. (20) 6 can be obtained using 
either Eqs. (9) or (10). A bootstrap procedure for calcu- 
lating a confidence interval is described in Table 8. 

Such an interval is luiown as apeycentile-t conjidence in- 
temal[19,31,52]. For the same random sample, X, as in 
Example 1, we obtained the confidence interval 
(3.54,13.94) for the mean. The percentile-t method for 

on the statistic 

Px-Px 

(20) B 

constructing a confidence interval for the mean as dis- 
cussed above improves upon the one discussed in Table 2. 
This interval is larger than the one obtained using the pro- 
cedure of Table 2 and enforces the statement given in Ex- 
ample 1 that the interval obtained there has coverage less 
than the nominal 95%. It also yields better Gesults than an 
interval derived using the assumption that T isq(0,l)  dis- 
tributed or the (better) approximation that T is t-&stti- 
buted with n - 1 degrees of freedom because the interval 
obtained with the percentile-t method accounts for slew- 
ness in the underlying population or other errors [21,3 1, 
32, 521. 

The percentile-t method is particularly applicable to 
location statistics, such as the sample mean, sample 
median, etc. [21]. However, for more general statistics, 
the percentile-t method may not be accurate. In the next 
section, we discuss a method to improve the percentile-t 
method in the context of hypothesis testing. 

Variance Stabilization 
Bootstrap tests have generally excellent power properties 
even for relatively low fixed values of N.  This, as well as 
the accuracy level claimed, holds whenever the test statis- 
tic is asymptotically pivotal [34]. To ensure pivoting, 
usually the statistic is %udentized.” However, in many 
situations, standard estimates of variance, such as the 
jacldcnife estimate, to studentise, result in confidence in- 
tervals with erratically varying lengths and end points. 
Practical experience showed that pivoting often does not 
hold unless an appropriate variance-stabilizing trmsfor- 

Table 10. Procedure for the estimation of a variance-stabilizing transformation and a bootstrap test. 
Estimation of the vav.zance-stabilizin8 tv.anzsfomation. 
(a) Generate B, bootstrap samples, Xt*, from x and for each calculate the value of the statistic &:, i = 1,. . . , B,. 
(b) Generate B, bootstrap samples from x$*) i = 1, . . . , B, and calculate 6:’, a bootstrap estimate for thevariance of$:, for 
example, using Eq. (9) with B = B,. 
(c) Estimate the variance fimction c(6) by smoothing the values of 6;’ against 6;. 
(d) Estimate the variance-stabilizing transformationa, h( $), from 

h(6)  = I { ~ ( s ) } - ~ ”  ds. 

using some sort of numerical integration, where 6, is the lowest p$rmissible vaiue of 6. 

mate ia given P(h(6) - h ( 6 )  2 ia) = a by the ash critical point of h(6”) ~ h(6). 

Step 1. 

-i) 

* I  

Step 2. Bootswap testfov. 6 (or b(6)).  Generate B, bootstrap samples and compute 6: and thus h(6; )  for each sample. Approxi- 

“If T is a statistic that in large samples tends to a parent parameter 6, and the variance of Tis some function of 6, say 

c(6) / n + o(n-’), then to order n the variate = { ( ( 6 ) - ” z d ~  has variance 1 / n + o(n-’).} 
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Table 11. The bootstrap procedure to find a confidence interval for 
6 based on the unwrapped phase estimator. 

Step 0. Collect and sample the data to obtain Zt, t = - $, . . . , + - 1. 
Step 1. UiiwrapAtlie phase of the Tpoint signal 2, to provide a non-decreasing function +t which approximates the true phase $t. 
Step 2 .  Obtain 6, an initial estimate of the aircraft parameters by fitting the nonlinear observer phase model (Eq.(25)) qt,* to Qt 

in a least-squares sense. 
Step 3. Compute the residuals 

Step 4. Compute 
Step 5. Draw a random sample X’ = {Z-T,2,  ... , E ~ , ~ - , } ,  with replacement, from X = { Z - T , 2 ,  ... , iT,2-,} and construct 

a bootstrap estimate of the standard deviation of Q,, i = 1, ... ,4. 
* *  

A *  6: = @,;$ + E t .  

Step 6. Obtain and record the bootstrap estimates of the aircraft parameters, $*, by fitting the observer phase model to 4; in a 

Step 7 .  Estimate the standard deviation of 4; using nested bootstrap step and compute and record the bootstrap statistics 
least-squares sense. 

oz 
Step 8. Repeat steps 5 through 7 a large number of times, q. 
Step 9. For each parameter, order the bootstrap estimates asq:(l) 5 q:(21 5.’. 5 q:(N) and compute the(1 -a)lOO%confidence 

interval as 

where U = N - LNa / 21 + 1 and L = LNa / 2 J. 

mation for the parameter estimate of interest is applied 
first. Hall et al. [33] have discussed the construction of a 
confidence interval for the correlation coefficient when 
using a variance-stabilizing transformation. The idea sug- 
gestedin [33] is illustratedinTable9 (see also [21,52]). 

The problem with this procedure is that in many appli- 
cations a variance-stabilizing transformation is not 
known. Tibshirani has introduced an “automatic” 
method of obtaining a variance-stabilizing transforma- 
tion for use in constructing percentile-t coiifidence inter- 
vals [65]. The method estimates a variance-stabilizing 
transformation using an initial double bootstrap step, 
computes a percentile-t interval for the transformed sta- 
tistic, and then transforms this interval back to the origi- 
nal scale. Tibshirani‘s idea can be used to conduct 
hypothesis tests with good power properties as illustrated 
in Table 10. Advantages of this are that it is “auto- 
matic”-one does not need to know the variance- 
stabilizing transformation in advance and that it is invari- 
ant under monotonic transformations in some settings. 

The total number of bootstrap samples required by 
this procedure is B, B, + B, . In the example given by Tib- 
shirani [65] B, = 100, B, = 25 and B, = 1000 were used 
so that the total number of bootstrap samples is 3500. 
B, =25 and B, = 1000 were suggested by Efron [21] to 
estimate a quantile and a variance, respectively. Tibshi- 
rani [65] believes that B, = 100 is sufficient for the esti- 
mator of the variance-stabilizing transformation because 

of the smoothing that is inherent in the computation ex- 
plicitly in stcp 1 (c )  and implicitly in step 1 (d) as per Table 
10. Note that step l (b)  in Table 10 can be replaced by the 
jacldmife method. A jaclduiife estimate might help to re- 
duce the number of computations, especially when the 
sample size is small. 

Example 5. Confidence interval for the correlation coefficient 
Let 6 = p be the correlation coefficient of two popula- 
tions, assumed to be unknown, and let and 6 be esti- 
mates of p and the variance of;, respectively, based on the 
samples x = {XI ,..., X , }  and y = {TI, ..., 27,). Let X *  
andy’ be resamples, drawn with replacement fromX and 
y, respectively, and let p’ and GS2 be versions of 6 and6 
computed using X *  and y* rather than x and y. By re- 
peated resampling from x and y we compute ŝ , and t , ,  
such that with 0 < a < 1 

a 
P( (p’ - p, / o* I ŝ, I X, y) = - 

2 
= P(($ - p )  / o* 2 tal x, y) 

The percentile-t confidence interval for p is given by 
I ( X ,  y) = (b - %, I; - oŝ, ). A ~an@mzedpcwentile-t con- 
fidence interval is obtained as shown below. 

In the case of the correlation coefficient, there exists a 
transformation called Fisher’s z-transform [28] that is 
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stabilizing and normalizing [ 11. The transformation 
maps the parameter estimate 6 into is = + l o g s .  The 
transformed percentile-t method consists of first finding a 
confidence interval for 5 = tanh-’ 6 = log 5 and then 
of transforming the endpoints back with the inverse 
transformationp = tanh 5 = (e2 - 1) / ( e 2  + I) to obtain 
a confidence interval for p. 

Under the assumption that X and Y are bivariate nor- 
mal, the estimator j5 is normally distributed with mean 5 
and variance 1 / (Y, - 3) [ 11. Thus, 

P(-1.96 5 - 5) 5 196) = 095, 

and therefore the 95 % confidence interval for 5 is given by 

-1.96 - 1.96 

Height (m) 

A 95 % confidence interval for p is then obtained from 

Velocity (ms-’) Time Ref. (s) Source Freq. 

[ (-1.96 + p  1 ,tanh [ ~ 1.96 +6)) tanh ~ &z “ 

304.8 

if we were to assume the Gaussian distribution for 6. 
Simulation Results. Suppose that X = 2, + W and 

Y = 2, + W ,  where 2, ,Z2 , and W are painvise inde- 
pendent and identically distributed. In this case, the cor- 
relation coefficient of X and Y is p = 0.5. We drew Y, = 15 
realizations zl,$, and wz, i = 1, .. . ,15, from the normal 
distribution and calculated xz , y,,  i = 1,. .. ,15. We found 
6 = 0.36 and the 95% confidence interval (-0.18,0.74) for 
p, using Eq. (23). On the other hand, we used the boot- 
strap percentile-t method similar to the one described in 
Table 8 for tlie mean and found with N = 1000 the 95% 
confidence interval (-0.05,1.44). We also used Fisher’s 
z-transform and calculated, based on the bootstrap (with- 
out assuming bivariate normal distribution of ( X ,  T)’),a 

102.89 0 1.000 

confidence interval for the transformed parameter 
5 = tanh-’ p. Its endpoints were then transformed back 
with the inverse transformation tanh to yield the confi- 
dence interval (-0.28,0.93) for p. In both bootstrap ap- 
proaches we have used a jacldinife variance estimate. 
Clearly, the interval found using the percentile-t method 
is over-covering (Note that p is bounded within the inter- 
val [-l,l].), being larger than the two other ones. There- 
fore, finding a confidence interval for the transformed 
parameter and then transforming the endpoints back 
with the inverse transformation yields a better interval 
than the one obtained using the percentile-t method. We 
never observed in the simulations we ran that the trans- 
formed percentile-t confidence interval obtained con- 
tained values outside the interval [-l,l]. 

Furthermore, we considered a bootstrap-based vari- 
ance-stabilizing transformation as an alternative to Fish- 
er’s z-transform, as illustrated in Table 10. The 
smoothing in stage 1 (c) was performed by using a fLued- 
span 50% %“ing lines” smoother described by Hastie 
and Tibshirani [ 371. This smoother fits a least-squares re- 
gression line in symmetric windows centered at each 19: , 
i = 1,. . . , B, . It is simple to implement and generally per- 
forms well. The  integration in  step l ( d )  was 
approximated by a trapezoid rule. We used B, = 100, 
B, =lOOO, and a bootstrap variance estimate with 
B, = 25. The so obtained variance-stabilizing transfor- 
mation is depicted in Fig. 13 along with Fisher’s z-tran- 

BS MC 

Table 12. Results for parameter estimates based on the unwrapped phase. The 95% confidence bounds based 
on the bootstrap for each of the parameters are compared with the 95% confidence bounds determined by 

Monte Carlo simulation. These results are shown for 30 dB, 20 dB and 15 dB SNR. 

BS MC BS MC BS MC I_ 
103.04 
102.74 
0.30 

70 

0.004 
-0.006 
0.010 

Actual 

103.34 

0.92 
102.44 

0.015 

0.032 
-0.017 

103.65 

1.52 
102.12 

Upper Bound 
Lower Bound 
Interval length 

Upper Bound 
Lower Bound 
Interval length 

0.021 

0.053 
-0.032 

309.1 308.0 
302.2 301.9 

103.09 
102.76 
0.33 

103.06 
102.20 
0.86 

Upper Bound 328.2 320.7 103.52 
Lower Bound 290.7 288.6 102.30 
Intervallength ~ 37.5 ~ 32.1 ~ 1.21 

0.005 1.0001 

0.016 1.0002 

1.0001 
0.9999 
0.0002 

1.0004 
0.9996 
0.0008 

0.027 1.0007 
-0.027 ~ i:k~iyi ~ 0.9993 
0.054 0.0014 
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A 13. Variance-stabilizing transformation for the correlation coef- 
ficient estimated using B, = 100 and B2 = 25. The solid line is a 
plot of Fisher's z-transform. 

A 14. Bootstrap estimates of the standard deviation of B, = 1 000 
(bootstrap) estimates of the correlation coefficient before ap- 
plying the variance-stabilizing transformation. 

A 15. Bootstrap estimates of the standard deviation of B, = 1 000 
(bootstrap) estimates of the correlation coefficient after apply- 
ing the variance-stabilizing transformation of Fig. 13. 

sform applied to the same bootstrap values, $1, 
i = 1,. . . ,1000. 

To demonstrate the effect of the variance-stabilizing 
transformation, we estimated the standard deviation of 
1000 bootstrap estimates of 6 = p using the bootstrap 
(see Table 5 with B = 25) resulting in the graph of Fig. 14. 
The graph shows the dependence of the standard devia- 
tion with respect to $* = b" . After taking 1000 new boot- 
strap estimates ;:, i = 1,. . . ,1000, and applying the 
transformation of Fig. 13, we obtained the more stable 
standard deviations (estimated using Table 5 )  of Fig. 15. 
For comparison, we have also reproduced in Fig. 16 the 
standard deviation of new 1000 bootstrap estimates, b:,  
i = 1, .. . ,1000, after applying Fisher's z-transform de- 
picted in Fig. 13 (solid line). The results show that the 
bootstrap method is reasonable for estimating the vari- 
ance-stabilizing transformation, which will lead to more 
accurate confidence intervals in situations where a vari- 
ance-transformation situation is not known. 

To construct a confidence interval for I9 with the 
method of Table 10 we need first to find an interval for 
h(I9) and then back-transform the interval for h(19), to give 
(h-'(h(&) - il-a),h-' (h(I9) - ia)), where i, is the ath 
critical ppint of the bootstrap distribution of 
h(6")  -h(6). For the same data, z ~ , ~  , z ~ , ~ ,  and w z ,  
i = 1, ... ,15, we obtained the confidence interval 
(0.06,0.97). This interval is much tighter than the one 
obtained using the transformed percentile-t method 
based on Fisher's z-transform. 

The importance of variance stabilization for hypothe- 
sis testing and confidence-interval construction is elabo- 
rated in [33 ,  651 where Monte Carlo simulation results 
and extensive analysis can be found. 

Determination of Confidence Intervals for 
Passive Acoustic Aircraft Parameters 
The application reported in this section illustrates the 
concepts presented earlier for confidence interval estima- 
tion using the percentile-t method. 

Introduction 
We consider the problem of estimating an aircraft's con- 
stant height, velocity, range, and acoustic frequency 
based on a single acoustic recording of the aircraft passing 
overhead. Information about these physical parameters is 
contained in the phase- and time-varying Doppler fre- 
quency shift, or instantaneous frequency (IF), of the ob- 
served acoustic signal. An estimation scheme has been 
previously demonstrated [22-24,57,58 ] in this applica- 
tion using a model for the IF. 

To establish some statistical confidence of the parame- 
ters based on these estimates, we could use the theoretical 
distribution of the parameter estimates. However, the 
theoretical derivation of the parameter distribution is of- 
ten mathematically intractable particularly when the &s- 
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Source freq. (Hz) 

0.14 
____ 

1 LowerBound i 378.8 1 70.46 i -0.06 1 68.11 

0.23 Interval length 
I I I 

-. 
4.07 82.1 

tribution of the noise is unknown. Alternatively, if 
multiple realizations of the acoustic signal were available it 
would be a straightforward task to empirically determine 
the lstribution of the parameter estimates. In practice this 
is not possible since only a single reahzation of the acoustic 
signal is available. In this section we use bootstrap tech- 
niques to provide a practical means of determining the 
confidence bounds for the aircraft parameter estimates 
without assuming any distribution for the noise [ 591. 

A simple model for the aircraft acoustic signal, as heard 
by a stationary observer, is expressed as 

where U ( t )  is a continuous time, zero-mean complex 
white noise process with variance CY' , A is a constant as- 
sumed herein, without loss of generahty, to be unity, and 
$( t )  is given by 

where to  is the time when the aircraft is lrectly overhead, 
fa is the source acoustic frequency, cis the speed of sound 
in the medium, v is the constant velocity of the aircraft, h 
is the constant altitude of the aircraft, and 4, is an initial 
phase constant. 

From Eq. (25) the IF, relative to the stationary ob- 
server, can be expressed as 

v2  (t + h  / c) li- J h 2 ( C 2  - v 2 )  + v2c2  (t + h  / c)2 

v2  i t  + h  I c) \ -  

For a given f ( t )  or @(t), and c, the aircraft parameters 
collected in the vector 6 = (fa , h,  v ,  t o  )' can be uniquely 
determined from the phase model (Eq. (25 ) )  or observer 
IF model (Eq. (26 ) ) .  

To illustrate the use of the bootstrap, we consider an 
estimate of the unwrapped phase of the observed signal, 

as modeled by Eq. (25). The phase estimate is then fitted 
to the model in Eq. (25)  in a least-squares sense to pro- 
vide an estimate of the aircraft parameters. Bootstrap 
techniques are then applied to provide confidence bounds 
for the parameters based on this estimate. 

Alternatively, one may choose to use the observer IF, 
as modeled by Eq. (26), using central finite difference 
(CFD) methods [4,5]. The CFD estimate is tlien fitted to 
the model in Eq. (26)  in a least-squares sense to provide 
an estimate of the aircraft parameters. Bootstrap confi- 
dence bound estimates are then obtained. However, spe- 
cial care must be talcen with the CFD approach due to the 
correlation of the residuals (see, for example, [73]) .  

We first validate the method presented in Table 11 us- 
ing synthetic data and then we demonstrate the applica- 
tion of the bootstrap to real passive acoustic data. 

Simulation Results 
We consider only discrete-time signals as appropriate 
sampled versions of the continuous-time signals and de- 
note by $$ and Zt,, the phase and the observed signal as 
h c t i o n s  of the discrete time parameter t E Z. 

We estimate the aircraft parameters using a 
T = 320.point test signal 2, described by Eq. (24) at 

A 16. Bootstrap estimates of the standard deviation of B, = 1000 
(bootstrap) estimates of the correlation coefficient after apply- 
ing fisher's variance-stabilizing transformation tan h-', 
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A 17. The histograms for the unwrapped phase-based bootstrap estimates (left column) are compared with the histograms of the 
Monte Carlo estimates for each of the parameters (right column) at 20 dB SNR: (a, b) source frequency, (c, d) velocity, (e, f) height, 
and (g, h) time reference. 

three levels of SNR (15 dB, 20 dB, and 30 dB). The pa- 
rameter estimates are derived from the phase of the ob- 
served signal, 2,. The steps in this procedure are given in 
Table 11. Zero-mean white Gaussian noise was used in 
the simulation. The parameters ofthe test signal are: sam- 
pling frequency f r  = 8 Hz, h = 304.8111, v = 102.89 ms-', 
fa = 1 Hz, and to  = 0. The number of resamples was 
N = 1000. 

The bootstrap results are then compared with those 
computed by Monte Carlo simulation where the parame- 
ter estimates are computed for N = 1OOOindependent re- 
alizations of Zc having the same parameter values and 
SNR levels as for the bootstrap experiments. The confi- 
dence bounds for each of the parameters are then com- 
puted as for the bootstrap procedure. We assess the 
performance of the bootstrap experiments by comparing 
them with the corresponding Monte Carlo results. 

The results of this experiment are summarized in Table 
12. The bootstrap-based bounds, as shown in the Table 

12, agree closely with the Monte Carlo results at each of 
the three SNR levels considered. In Figures 17a-h 
bootstrap based histograms for each of the parameter 
estimates (left column) are compared with the histo- 
grams of their Monte Carlo counterparts (right col- 
umn) at 20 dB SNR. 

Results with Real Passive Acoustic Data  
The aircraft parameter-estimation technique, using the 
unwrapped phase of the signal, and the bootstrap tech- 
nique are now applied to real passive acoustic data. The 
physical parameters of the aircraft in this single acoustic 
recording are nominally: h = 422m, v = 72 ms-' , to  = 0, 
f f i  =682 Hz. The 95% confidence bounds for the pa- 
rameters, with N = 1000 bootstrap resamples, are shown 
in Table 13. 

The results confirm that bootstrap techniques can be 
used in the aircraft passive acoustic parameter estimation 
problem to provide confidence bounds for the parame- 
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ters, without assuming any statistical distribution for the 
parameter estimates and in the absence ofmultiple acous- 
tic realizations. The bootstrap-derived bounds agree 
closely with those obtained by Monte Carlo simulation. 
We performed siniilar experiments with CFD estimates 
of Eq. (26) and observed that the confidence bounds pre- 
sented here are much tighter than those of the CFD-based 
estimates. Thus, the unwrapped phase-based method 
provided superior performance. 

Conclusions 
In this article we attempted to introduce the reader to the 
powerful bootstrap, which is to date unavailable to most 
engineers. The bootstrap is an extremely attractive tool 
because it requires very little in the way of modeling, as- 
sumptions, or analysis, and it can be applied in an auto- 
matic way. Further, bootstrap methods are extremely 
valuable in situations where data sizes are too small to in- 
voke asymptotic results, which is often the case in sig- 
nal-processing applicatioiis. 

We described the basic concept of the bootstrap, dis- 
cussed its application to testing statistical hypotheses, and 
looked at accuracy related issues. In particular, we dis- 
cussed the principle of pivoting, which is standardizing 
for scale so that large-sample distributions of test statistics 
do not depend on unknown parameters. We found that 
bootstrap tests based on pivots have simultaneously 
greater accuracy of level of significance and greater accu- 
racy in terms of position of critical point than tests that do 
not employ pivots. We considered a bootstrap-based 
method for finding variance-stabilizing transformations 
to ensure pivoting. Several examples and one real-life ap- 
plication to passive acoustic aircraft parameter estimation 
were given to illustrate the use of bootstrap techniques. 

The bootstrap substitutes considerable amounts of 
computation in place of theoretical analysis. In an era of 
exponentially declining computatioiial costs, such 
computer-iiiteiisive methods are becoining increasingly 
attractive. We recommend that the reader implements 
the algorithms presented in this article to his or her par- 
ticular application to discover the power of the bootstrap 
for signal-processing applications. Matlab@ codes that 
can assist the reader are available upon request. 
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