
s far back as the late 1970s, the impact of af- 
fordable, high-speed computers on the theory 
and practice of modern statistics was recog- A ized by Efron [ 14,151. As a result, the boot- 

strap and other computer-intensive statistical methods 
(such as subsampling and the jackknife) have been devel- 
oped extensively since that time and now constitute very 
powerful (and intuitive) tools to do statistics with. The 
goal of this article is to provide a readable, self-contained 
introduction to the bootstrap and jackknife methodology 
for statistical inference; in particular, the focus is on the 
derivation of confidence intervals in general situations. A 
guide to the available bibliography on bootstrap methods 
is also offered. 

Resampling and the Bootstrap 
The General Nonparametric Setup 
Suppose that X = (X1,. . . , X,) is an independent, identi- 
cally distributed (i.i.d.) sample from a population with 
distribution F. In other words, F(x)  = Prob (X, I x) ,  for i 
= 1,. . . , 37, where x is any real number; the function F is 
usually called a probability dstribution function, or a cu- 
mulative dstribution function. The sample is studed in 
order to estimate a certain parameter, Q(F) ,  associated 
with the distribution, F, whose form is unknown. A sta- 
tistic, T = T ( X ) ,  might be used to estimate e ( F )  from the 
data. However, a measure of the statistical accuracy of the 
point estimator T ( X )  is also desired. In other words, al- 
though it is an unfortunate fact of life that our estimator 
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will not equal 0(F) exactly, the deviation of T ( X )  from 
0(F) ,  i.e.,the“error”inestimating0(F) byT(X), could be 
statistically quantified; in that case, the practitioner 
would be able to gauge how much importance to attach 
to the indvidual Ccmeasurement,” T ( X ) .  For example, the 
bias (also known as the “systematic error”) and the vari- 
ance (which is responsible for the “random error”) of the 
estimator, T, are of interest and are defined as follows: 

where E, denotes expectation under the F dstribution. 
The quantity T ( X )  - 0(F) ,  i.e., the estimator minus the 
estimand, represents the “error” in estimating 8 ( F )  by 
T ( X ) ;  it is also sometimes called a “root” [5, 131. Much 
(if not most) of statistical theory and practice is devoted 
to studying the sampling properties of such “roots”; in 
particular, bootstrap methods provide easy-to-use and 
rather powerful tools for this purpose. 

To fix ideas, consider for example the case where 0(F)  
is a location parameter, say the mean or median ofF, and 
T ( X )  is the corresponding sample statistic (sample 
mean, sample median, etc.) ; nonetheless, our discussion 
is general, and not at all limited to the simple location 
problem. In many practical situations the central limit 
theorem can be invoked to assert that the estimator, 
T ( X ) ,  is approximately distributed as a Gaussian ran- 
dom variable. This will typically be true for most ccgood)) 
estimators, provided the sample size, N, is large enough, 
in which case the estimator is said to be asymptotically 
normal, and an approximate interval estimate, i.e., a con- 
fidence internal, for 8(F)  can be formed, in addition to 
the point estimate, T ( X ) .  

Confidence Intervals Based on 
Asymptotic Normality 
If the bias, Bias,(T), is negligible (compared to the square 
root of the variance Vav, (T)) ,  a (1 - 0) 100% confidence 
interval for 0(F)  will be of the usual form 

(3) 

where z = z (1 - a/2) is the 1 - a/2 quande of the stan- 
dard normal distribution. [All probability (cumulative) 
Qstribution functions are monotone increasing. If a dis- 
tribution, F(x), is stvictly increasing, i.e., x < y implies 
F(x) < F Cy), then its a pantile is given byF-’(a), where 
E’ is the inverse function of F; for example, the normal 
dstribution is strictly monotone. If F happens not to be 
strictly increasing, then it must have some regions where 
its graph is flat; in that case, the a quantile ofF is defined 
as the smallest x-value such that F(x)> a . ]  If Bias,(T) is 
not negligible, the confidence interval must be adjusted 

appropriately; generally, a (1 - a)  100% confidence inter- 
val for 0(F) will be given by 

T( X )  - Bias, ( T )  - 

T( X )  - Bias, ( T )  + Z J p J q  
(4) 

Note that the aforementioned confidence intervals are 
based on the fact that the shape of the large sample Istri-  
bution of the root T ( X )  - 0(F)  is lcnown; it is the bell- 
shaped normal. However, to formulate this confidence 
interval one needs to lcnow Bias,( r )  and Vav.,( r )  . 

Estimates ofBias,(r) and Vavp(T) might be available 
in the statistical literature for different problems. For ex- 
ample, if T ( X )  = x = + c“ X 2  is the sample mean, and 

8(F) = E, X ,  is the population mean, then it is well 
linown that Biax,(T) = 0, and V ~ T ,  ( T )  = + V ~ T ,  ( X ,  ), 
where Va~,(x,) can be estimated by the sample variance 
1 N-1 E” ( X 2  - x)’ . If T ( X )  is the sample median and 

0(F)  is the population median, estimates ofBias,(T) and 
VavF(r) can still be calculated (cf. [32] p. 354), but they 
are substantially more complicated. As a matter of fact, 
to estimate the variance of the sample median, one needs 
to estimate the value of the derivative ofF  (i.e., the prob- 
ability density function F’-assuming that it exists) at 
the location of the tvue median; note that nonparametric 
density estimation is a difficult issue, and it would be 
nice if it could be somehow bypassed, especially in such a 
“bread-and-butter” everyday example as the sample me- 
&an. The bootstrap (and the closely related jacldcnife 
[ 14, 161) come to our rescue here by providing alterna- 
tive methods to easily obtain estimates of Bias,(T) and 
Va~?,(r) for a wide variety of statistics, T ( X ) .  However, 
before going into that, let us look at this problem from a 
dfferent angle. 

2=1 

The Usefulness of Monte Carlo Randomization 
Let us suppose, for the sake of argument, that the popula- 
tion and its distribution, F, are in fact laown-a very un- 
realistic assumption in practice. In that case, Biasp( r )  and 
Vav,(r) could be calculated exactly by analytical meth- 
ods, or approximately by Monte Carlo simulation, in case 
the analytical computation is dfficult. 

The idea behind Monte Carlo simulation is the follow- 
ing. Since the population is considered lcnown, we can 
draw any number of i.i.d. samples from it. Suppose that 
we draw B samples X(’), . . . , X(B) ,  where each sample con- 
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sists 0fNi.i.d. observations from the populationF. IfB is 
large enough, the strong law of large numbers can be in- 
voked to claim that 

whereg(.) is some function, e.g.,&) = x org(x) = x2. 
Then we would have 

In other words, since bias and variance give us a rough 
idea about how the values of the statistic Tvary (fluctu- 
ate) acvoss samples, we estimate Bias,( T) and Vavt.( T) by 
the empirically observed (over our artificially generated 
samples, X(l), ... , X(B)) bias and variance. 

Therefore, the idea is that we can estimate (by Monte 
Carlo) the variability of the statistic T across samples by 
looking at the empirically observed variability of T across 
our (artificially generated) samples. Thus, we could also 
estimate (by Monte Carlo) the whole sampling distribu- 
tion of the root, T(X) - O(F), without reference to the 
asymptotic (for large N )  normal distribution. 

Define P,(A) to be the probability of event A occur- 
ring, under the assumption that the population has distri- 
bution F, and let 

Dist,_,,* (x)  E Pt. (T( X) - e( F )  I x). (8) 

Again, although F is considered known, the analytical 
evaluation ofDist,-,,,(x) may be difficult, and we may re- 
sort to Monte Carlo. Observe that Dist, - o, t . ( ~ )  is just a 
shifted (centered) version of 

Dist,,,(x) = P F ( T ( X )  < x )  ( 9 )  

so that DistT- 8, ,(x) = Dist,, F(x + O(F)). If we define the 
indicator function of event A by the formula 

1 if A occurs 
0 else 

1( A) = 

then, using Eq. (5) withj(T(X)) = l(T(X) I x ) ,  and the 
fact that E,l(A) = PE. (A), we have 

i.e., the theoretical probability should be approximately 
equal to the observed sample proportion ifB is large [note 
that (# T(X(’1) 5 x )  reads: number of the T(X(’))s among 

~ 
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T (X(’)),. . ,, T (X(”)) that are observed to be less or equal to 
x;  Eq. (10) should be viewed as describing a function of 
the real argument x, and can be plotted as such]. 

Knowledge ofDist,_,,,(x), for all realx, would imme- 
diately yield a (1 - a) 100% confidence interval for O(F) in 
the form 

where q(a/2) and q ( l  - a/2) are the a/2 and 1 - a/2 
quantiles of the Dist, - distribution, respectively. 
The above confidence interval is equal tailed, meaning 
that the probability that the interval’s left end-point is 
bigger than 8(F)  is equal to the probability that the inter- 
val’s right end-point is smaller than 8(F) .  Other construc- 
tions (e.g., symmetric, shortest length, etc.) for 
confidence intervals are also available (cf. [24], [25]) and 
possess some interesting theoretical properties; neverthe- 
less, the confidence intervals that are most often used in 
practice are equal tailed [20]. Now from Eq. (lo),  the 
quantiles of Dist, &(x) (and, therefore, also those of 
Di~t,~(x)) can be approximately calculated, and the con- 
fidence interval (Eq. (11)) is constructed with the help of 
our Monte Carlo Simulation. 

The Bootstrap Principle 
To summarize, ifthe population and its distribution, F, 
weve known, then we would be able to calculate (analyti- 
cally or by Monte Carlo simulations) Bias,(T), VayF(T), 
and Dzst, - &x). However, in the practical problem the 
population ’and its distribution F are not known. The 
bootstrap method now is an outcome of the following 
simple idea: sinceyou do not have the wholepopulation, do thc 
best with whatyou do have, which is the obsewed sample X = 
(XI,. . ., X,). 

In other words, the bootstrap method amounts to 
treating your observed sample as ifit exactly represented 
the whole population; see the pioneering paper by Efron 
[ 141. In this fashion, the Monte Carlo procedure in which 
B i.i.d. samples were drawn from the population is modi- 
fied to read: 
A Draw B i.i.d. samples X*(l), ..., X*(’) (each of size N) 
from the sample population consisting of the observa- 
tions {X1,. . . , X,}. In the bootstrap terminology, these B 
i.i.d. samples are called vesamples. Of course, drawing an 
i.i.d. sample from afinite population such as {XI, .  . .,X,>, 
amounts to sampling with replacement from the set 

Note that, as the whole population has distribution F ,  
the sample population has distribution F ,  which is called 
the cmpivical distribution and is defined as 

{X1,. . . , X J  . 

& x ) = - C l ( X ;  l N  5 x > - - ( # X ,  1 SX), 
N c=1 N 
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for any real number x. To elaborate, in order to form the 
i* resample, x*(~) = ( x*(’) , . . . , ~2’))~ we sample with 

replacement from the set {X,, . . . , X,}, or, using a dffer- 
ent terminology, we take an i.i.d. sawple of size Nfiom a 
population with dist&buCion F. 

The Bootstrap as a ”Phg-in“ Method 
This last observation suggests a different perspective for 
the implementation of the bootstrap as a simple “plug-in” 
method. Namely, if at a certain formula the unknown I s -  
tribution F appears, you just substitute i in place of F to 
get its bootstrap approximation. For example, the boot- 
strap approximations to Bias,( T‘) and Var,( r )  are given 
simply by 

Bias“ (T)  = Bias, (T) (13) 

Vav”(T) = Vay,(T). (14) 

It should be noted that e($) is just the sample version of 

the population parameter 8(F). In most cases, the statistic 
T(X)  is chosen to be just0 F . For example, if 0(F) is the 

population median, then we might want to use the sam- 
ple median to estimate it, i.e., T ( X )  = 8(j). [It is inter- 

esting to note that if O(F) = E,o(X,) for some functiong 
(.),then8isalinea~functionofF; i.e.,ifF,,Fzaretwodis- 
tributions, then 8(h F, + (1 - h) F2) = hO(F,) + (1 - 
h)8(F2),forallhE [0, l].Inthatcase,thestatistic8 F is 

called a lineay statistic. The prime example of a linear 
function, 0( .), and a linear statistic, 8 F , is of course pro- 

vided by the population mean and sample mean, respec- 
tively, whereg(.) is the identity function, i.e.8 (x) = x.] 
Unless otherwise stated, we will henceforth assume that 
8 F E T( X) for simplicity; in a different situation the 

“plug-in” principle can be appropriately modified. 
As stated in the previous subsection, F is nothing more 

than the distribution of the sample population. Nonethe- 
less, can also be viewed as our (nonparametric) estimate 
of the dstribution, F, of the whole population, i.e., we 
can view j ( x )  (for some fured real number x )  as our esti- 
mate of E(%); thus, the “plug-in” bootstrap principle is 
iiothiiig more than t h h e  familiar “plug-in-an-estimator- 
in-place-of-an-unknown” principle used routinely 
throughout science and engihneering! 

To elaborate on treating F as an estimator of F ,  let us 
fix a real number, x;  if we let U, = 1(X, 5 x) ,  it is obvious 
that U,,. . ., U, are i.i.d. Bevnoulli(p) random variables, 
i.e., 1-0 coin flips, or success/failure dichotomies. Note 
that herep = Plrob(X, 5 x )  = F(x); thus, estimating thisp 
probability (= probability of “success” of the Bevnoulli 
random variables), i.e., estimating F ( x ) ,  boils down to 
finding the observed proportion of successes among the 

( 3 

( 7 
(3 

(3 

N trials comprising our sample. The RHS (right-hand 
side) of Eq. (12) is nothing more than this observed 
(sample) proportion. 

A Parametric Setup 
The “plug-in-an-estimator” viewpoint permits us to see 
how the bootstrap would work in a parametric problem 
as well. A parametric framework starts by postulating that 
the distribution, F ( x ) ,  is linown up to some parameter 8 ;  
in other words, it is postulated that F belongs to a known 
class offunctions {F,(.):8 E 0} parametrized by 8, where 
O is the assumed parameter space. 

Hence, to pinpoint F we just need to know its corre- 
sponding 0-value. Equivalently, to estimate F(x)  from 
sample data, we just need to estimate its corresponding 
8-value. Thus, our parametric estimator of F ( x )  is simply 
Fi, ( x ) ,  where 8 = T(  X) is the estimated (from our sam- 

ple) value of the parameter 8. 
Consequently, the parametric bootstrap method would 

be to approximate quantities such as Bias, (T), Vay, (T), 
and DiscT3 (x) by Bias, ( T ) ,  VayF ( T ) ,  and Dist,,Fe ( x ) ,  

respectively. AU the Monte Carlo approximations remain 
vahd, except that in the parametric setup, to form the 8” re- 
sample x*(’) = (X; ( ’ )  ,... , X ,  , we take an i.i.d. sam- 

e ple from a population with lstribution FA.  

Note that in parametric problems, the theory of maxi- 
mum likelihood estimation and Fisher information are 
traditionally used to get point and interval estimates of 
the unknown parameter 8 (cf. [37]);  however, the boot- 
strap will tend to give more accurate interval esti- 
mates-as compared to the standard intervals based on 
asymptotic normality of the maximum lilelihood estima- 
tors (cf. [25],  [20]). Having said that, let us return and 
focus our attention on the general nonparametric prob- 
lem, that is, the problem where F is completely unknown, 
since here there is no generally applicable methodology, 
and thus the bootstrap is more urgently needed. 

e 0 

*( ‘ )  ) 

Construction of Bootstrap Confidence Intervals 
As was mentioned before, to calculate BiusF(T) and 
Vay,(T) we might have to resort to Monte Carlo simula- 
tion even if the distribution, F, were linown; see Eqs. (6), 
(7). Thus, to calculateBiasF( r )  and Va.y.,( r )  we might use 
the following Monte Carlo approximations: 

(16) 
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The above-mentioned bootstrap approximations to 
BiasF( r )  and VirF( r )  can be used to yield a confidence in- 
terval for B(F) based on the normal approximation as 
given in Eq. (4). Alternatively, we can bypass the normal 
approximation and set confidence intervals for 8(F) based 
on the exact distribution of the root T(X) - 8(F) given in 

Of course, this exact lstribution is not known, but a 
bootstrap approximation is available. More specifically, 
the bootstrap approximation to DistT-,,(x) is simply 
given by 

Eq. (8). 

Dist;- , , , (x)  =DiG,-o, i . (x)  (17) 

[T(X) -q*(l-a/2),T(X) -q*(a/2)], (18) 

and consequently an equal-tailed (1 - a)  100% bootswap 
confidence interval for O(F) would be 

where q*(a/2) and q*( 1 - a/2) are the a/2 and 1 - a/2 
quantiles of the Dist, - 0, j(x) distribution, respectively. 

It should be mentioned at this point that this is just one 
of many possible ways to construct a bootstrap confi- 
dence interval, namely, the “percentile” method, the “per- 
centile-t” or “bootstrap-t,” the “BC,” method, etc.; see 
[20] (chapter 22) for a thorough discussion and [13], 
[24], and [25] for a comparison of bootstrap confidence 
intervals. Note that in the terminology of [24], Eq. (18) 
represents a confidence interval based on the “hybrid” 
method, whereas in [25],  Eq. (18) is the “other percentile 
method” confidence interval. To avoid the confusion we 
will refer to Eq. (18) simply as the root method for boot- 
strap confidence intervals. 

Now we can easily evaluate the bootstrap distributions 
Dist,- andDzst,, j(x)-and therefore their quantiles 
as well-using aMonte Carlo simulation. In order to start 
in this direction, observe that we can write Dist,j.(x) = 

Pj(T(X*)Ix) andDist,-,j(x) = Pj(T(X*) -e($)< x), 

where, as before, X* is an i.i.d. resample from a population 
with distribution F .  Thus, our Monte Carlo approxima- 
tions to the bootstrap distributions are immediate: 

Disti,F(X) = D ~ S ~ ~ , ~ ( X )  = 

this histogram would be an approximation to the prob- 
ability demity function of the random variable T(X), 
while DistT,>(x) = Pj(T(X*) < x) is an approximation to 
the cumulative probability lstribution function of T(X). 
Reference [ 581 contains many examples of such plotted 
histograms that are very helpful in terms of visual inspec- 
tion and interpretation of the variability of T(X). 

Note that the approximation to probability distribu- 
tion function Dist,, j ( x )  as described by the RHS of Eq. 
( 19) actually represents the “empirical” dstribution func- 
tion of the observed T(X*(’j’), or, in other words, the dis- 
tribution function of the (pseudo)sample consisting of 
T(X*(’)), i = 1, ..., B. The graph of the approximation 
given by the RHS of Eq. (19), Dist,j(x), is of a very sim- 
ple form: it looks like a “ladder,” i.e., the graph is flat, ex- 
cept for jumps (= “steps”) of size 1/B occurring at the 
locations of the observed T(X*(’)). These observations 
point to a very easy way of obtaining approximations to 
the quantiles of distribution Dist,, (x)  from which the 
quantiles ofDist,- ,j.(x) can be readdy figured out; for, if 
q*(a/2) and q*( 1 - a/2) are the a/2 and 1- a/2 quantiles 
of the Dist, ~ ej(x) distribution, then 

q*(~+)=Q*(a/2) -e(@), 
q*( l -a /2)  =Q*(l-@) -e(@), 

where Q*(a/2) and Q*( 1 - 4 2 )  are the a/2 and 1 - a/2 
quantiles of the Di$tT$(x) distribution. 

We now describe how to easily find approximations to 
theQ* (a/2) andQ* (1 - a/2) quantiles based on the RHS 
of Eq. (19). Start by sorting the values, T(X*(’)), i = 1,. . ., 
B,  of the (pseudo) sample and recording them in ascend- 
ing order, i.e., TI* < T,” <. . . < Ti . Now observe that, if k 
is a positive integer, then 

and 

1 (#T(X*(“) < x +e(@)). 
B 

Similarly to Eq. ( lo),  the functions Dist, - e,j(x) and 
DistT,j(x) should be viewed as hnctions of the real argu- 
mentx, and can be plotted as such. Alternatively, a practi- 
tioner can plot a histogrum of the T(X*(’j), for i = 1,. . . , R; 

this is because (by construction) exactly k out of the B values 
of T(X*(’j) are less than (or equal to) Tk* . [Consistently with 
our definition of quantile, if it so happens that T,“ = T,”,, for 
some k in Eq. (22), then &s simply m e m  that the IZ/B and 
the (k  + 1)/B quandes ofthe lstribution given by the RHS 
of Eq. (19) happen to be the same and both equal to 
T,” = Th:l .] Thus, the two approximate quantiles are: 

(23) 
Q* (a/2) = TkT , Q“ (1 - a/2) = Tb: , 
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where k, = LBa/2J + 1, F z ,  = LB( 1 - a/2)] + 1, and I.] 
denotes the integer part. Putting Eqs. (21) and (23) to- 
gether, we obtain a quicli-and-easy alternative formula- 
tion of the Toot confidence interval of equation Eq. (18) as 

(24) 
[2T(X) -TL ,2T(X)  -T;]. 

Having found the Q‘ (a/2) and Q* ( 1 - d 2 )  quantiles 
(at least approximately), we are now in the position to 
also formulate the equal-tailed (1 - a) 100% pewentile 
bootstrap confidence interval for 0(F) ;  this is given sim- 
ply by the interval 

The percentile bootstrap confidence intervals are also 
very popular (as popular as the root intervals, if not 
more); see, for instance, Example 1 and Table 2 of [58] 
where the percentile intervals are employed. However, 
the justification for their use is not obvious from what 
has been discussed so far here. In addition, comparing 
the root interval (Eq. (24)) to the percentile interval 
(Eq. (25)), we note that the roles of Th:, Tb: get some- 

how “interchanged.” 
The following section contains some lscussion on 

how it is at least plausible that both the root and the per- 
centile interval are valid; nevertheless, the bottom line is 
(see [20], p. 174) that both the root interval (Eq. (24)) 
and the percentile interval (Eq. (25)) could be improved: 
an improvement of the root interval is given by the “boot- 
srrap-t” interval presented in the following section, while 
an improvement of the percentile interval is given by the 
“bias-corrected accelerated” BC, interval. Rather than 
going into more detail regarding the percentile and BC, 
intervals here, we can refer the reader to the very interest- 
ing exposition in [20], p. 170 and on. 

It should also be noted that since the resampling pro- 
cedure implicit in Eq. (20) is done with the samplexi,, . . . , 
X, beingfixed and playing the role of a_population with 
distribution F ,  the sample statistic, B(F), is just a fixed 
number, calculated once and for all from the original s a m -  
pleX,,. . .,X,. In the bootstrap literature, the terminology 
is that the resampling is done conditionally on the data 
XI , .  . ., x,. 

Finally, recall that the construction of confidence in- 
tervals and hypothesis testing are dual problems in statis- 
tical theory, i.e., one can perform hypothesis tests on the 
basis of confidence intervals and vice versa. So it should 
be of no surprise that the bootstrap can be used for the 
purposes ofhypothesis testing; see [58] for more details. 

cated situations in a straightforward, “automatic” way 
and (b) it provides moye accumte answers in standard set- 
tings, as compared to the ubiquitous normal approxima- 
tion. So far we have discussed only part (a) above; we will 
now focus on (b) . 

Suppose that we have at our disposal a consistent es- 
timator of the variance VuvF (T) ; let us call this estimator 
VivF (T). [Loosely speaking, an estimator is said to be 
consistent if it is large-sample accurate with high prob- 
ability, i.e., if it converges (in probability) to its target 
value as the sample size increases.] To fixideas, note that 
if the statistic, T(X) ,  of interest is the sample mean X, 
then there is available a simple consistent estimator of 
VavF(T), namely, VayF(T)  = s 2 / N ,  where  

s 2  = ( N  - l)-’ c” h = l  X ,  - x2 is the sample variance. 
Dividing the statistic T ( X )  by its estimated standard de- 
viation 4- is usually referred to as “studentiza- 
tion,” since-if the data are Gaussian and T (X) 
happens to be the sample mean-this would result in 
Student’s t-distribution. For a general statistic T (X) we 
can also consider the sampling distribution of the “stu- 
dentized)) root S ,  i.e., 

where S, = (T (  X )  - O( F ) ) / d m .  Knowledge of 
Dirtse ,F (x) for all realx would yield a (1 - a)  100% confi- 

dence interval for B(F) in the form 

where u(a/2) and u ( l  - a/2) are the a/2 and 1 - a/2 
quantiles of the D h S e  ,F (x) distribution, respectively. 

Note, however, that for general statistics, or even for 
the sample mean if we are not willing to assume that data 
are Gaussian, the distribution Distse ,F (x) and its quan- 
tiles are unknown; nevertheless,DistSe ,F (x) and its quan- 
tiles can be estimated by the bootstrap, similarly to what 
was discussed in the previous subsections. In particular, 
the bootstrap dlstributionDistie ,F (x), which can be used 
to approximate Dists e ,~ (x> is given by 

Disti8 ,F ( x) = Dist ( x) = S 8 , F  

Higher-Order Accuracy of the Bootstrap 
and Studentiration 
The reason for the success and popularity of the bootstrap 
methodology is twofold: (a) it provides aiiswers (confi- 
dence intervals, standard error estimates, etc.) in compli- 

where Vi?;(’) (T) is the estimate of the variance of the sta- 
tistic T ( X )  as computedflom the X*@) YesumpLe. For exam- 
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ple, in the sample mean case, Vir ; ( ’ ) (T )  = (N - I)-’ 

Note that, if a variance estimate is not readily available, 
VirF ( T )  itselfcould be a bootstra estimate constructed 
as shown earlier ; in that case, Var$‘)( T) is the bootstrap 
variance estimate computed from the X*@) resample! In 
other words, we have an  iterated or nested bootstrap-a 
bootstrap simulation for each of the original bootstrap re- 
samples; cf. [25] or [20] for more details. 

In any case, an equal-tailed (1 - a)100% bootstrap 
confidence interval for @(F)  is 

u * ( i -  

where U* (a/2) and U’ (1 - a/2) are the a/2 and 1 - a/2 quan- 
tiles of the bootstrap Dist e ,F ( x )  distribution, respectively; 
the confidence interval ofEq. (29) is called a bootstrap-t or a 
percentile-t interval due to the “studentization.” 

As it turns out [50], the confidence interval of Eq. 
(29) is more accurate than either the root bootstrap inter- 
val of Eq. (18), or the normal confidence interval of Eq. 
(3) ; this is what is meant by “higher order accuracy of 
the bootstrap.” [Comparing different confidence inter- 
vals of approximate coverage level (1 - a)  100% for a pa- 
rameter 8, the confidence interval whose coverage level 
is closer to the nominal level is said to be more accurate; 
see e.g., [20], chapter 22.2.1 The mathematical explana- 
tion of this phenomenon is based on the theory of Edge- 
worth expansions of Dist r e ,F ( x )  and Dist ; e ,F ( x )  in 

powers of lm and can be found in [ 251 and [ 5 11. Note 
that this higher-order accuracy comes at a price, since 
the iterated bootstrap is much more computer intensive 
than the simple bootstrap; however, in the sample mean 
case the extra computational burden is minuscule be- 
cause a variance estimate can be computed without 
Monte Carlo simulation. 

Finally, let us note that the comparison of the (studen- 
tized) bootstrap to the normal approximation is not acci- 
dental. As a matter of fact, the question may be posed: 
“When does the bootstrap work?,” i.e., under what con- 
ditions do the bootstrap confidence intervals (Eqs. (18), 
(29), etc.) have coverage probability approximately equal 
to (1 - a)100% as they are supposed to? Although we do 
not attempt to give a definitive answer to this difficult 
question, it is important to mention that the validity of 
the bootstrap seems to be somehow tied to the concur- 
rent availability of the normal approximation. 

If T(X)  is a linear statistic, a very interesting result of 
Gin& and Zinn [22] shows that the bootstrap would 
work only if T(X)  is asymptotically normal with Var,(T) 
being asymptotically proportional to l/N, more on this 
property of the variance Vir,( r )  may be found later in 
this article. In other words, if T ( X )  is linear or almost lin- 

ear (i.e., approximable by a linear statistic) it seems that 
the bootstrap would not work unless T ( X )  is indeed as- 
ymptotically normal. This point of view allows for a heu- 
ristic explanation regarding how the root confidence 
interval of Eq. (24), and the percentile interval of Eq. 
(25) could be (under some conditions) simultaneously 
valid. The reason is that, if the root, T( X )  - e(@), is ap- 

proximately normal, N(O,  ~ a r ~  (T)) ,  then@(@) - T(X) 

is also approximately normal, N(0,  VarF(T)); this is due 
to the symmetry of the normal probability density. In 

other words, the large-sample distributions of 
T (  X )  - e(>) and 8 ( i )  - T( X )  are the same; thus the 

confidence intervals (Eqs. (24) and (25)) are both valid 
(at least to first-order). 

Consequently, if both (the normal and the bootstrap) 
approximations are simultaneously valid, it is natural to 
ask which is better, in which case the typical answer is that 
the bootstrap is better than the normal-“better” in the 
sense of giving more accurate confidence inter- 
vals-which explains the recent popularity of the boot- 
strap.  Another way of understanding the 
“better-than-the-normal” property of the bootstrap is to 
thud< of the “normal” as the “ultimate” (i.e., fmal) asymp- 
totic approximation, while the bootstrap may be thought as 
a “penultimate” asymptotic approximation, with the dis- 
tinction being that the sample size required for the “ulti- 
mate” approximation to be valid is generally larger than the 
sample size required for the “penultimate” to be valid. In 
others words, the bootstrap approximation “kicks irP be- 
fore (in terms of sample size) the normal approximation; 
the latter luclis in “ultimately “(i.e., for very large N). Many 
examples can be found in the literature [20] where the boot- 
strap is shown to work with N being as small as 10 or 15. 

To elaborate further on the question of higher-order 
efficiency of the bootstrap, note that in regular cases (e.g., 
if T( X) = X is the sample mean) it can be calculated that 
the skewness of the (true) distribution of T(X)  is approxi- 
mately equal to cF /a, where c, is a parameter depend- 
ing onP. [The shmness of the random variable Tis defined 
as the standardized third central moment, i.e., skewness 
of T equals EE ( T  - E F q 3  The skew- 
new is a rough measure of the asymmetry of the distribu- 
tion of T about its mean; for example, zero skewness 
indicates a symmetric distribution, positive skewness in- 
dicates the existence of a long right “tail” of the distribu- 
tion, and so on.] While the skewness of the normal 

(EF (T  - 
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approximation is zero due to its symmetry, the skewness 
of the bootstrap approximation is 2, ,”, with t, being 
a consistent estimator of c,. In other words, whereas the 
normal approximation matches the first two moments 
(mean and variance) of T(X)  but misses the third mo- 
ment (the skewness), the bootstrap approximation 
matches all three moments (mean, variance, and sliew- 
ness); this is what is commonly referred to as the boot- 
strap “capturing the sliewness” of the limit distribution, 
and this can be viewed intuitively as the reason behind the 
“better-than-thenormap property of the bootstrap. The 
fact that both approximations (the normal and the boot- 
strap) are ConcGwently v&d if N is very large (i.e., “ulti- 
mately”) can be explained by noting that the (true) 
skewness cp /m vanishes for very large N, thus the nor- 
mal approximation’s prescription of zero as the skewness 
of T is also a valid approximation if N is very large. 

Transformations and Variance Stabilization 
The reader should also refer to the textbook by Efron and 
Tibshirani [20] for a different construction of higher-or- 
der accurate bootstrap confidence intervals, the BC, in- 
tervals, that are based on the idea of “bias correction.” As 
the bootstrap-t confidence intervals can be considered a 
refinement and improvement over the root intervals, 
similarly the BC, intervals can be thought of as a refme- 
ment and improvement over the percentile intervals. It is 
quite interesting to note that the BC, intervals have the 
addtional desirable property of being “transformation 
invariant,” a property shared by the percentile intervals of 
Eq. (25), but not shared by either the root intervals of Eq. 
(18), or the bootstrap-t intervals of Eq. (29), nor by the 
normal approximation interval of Eq. (3). 

To explain the property of cctransforniation invari- 
ance,” consider a (strictly) monotone function&(.), and 
its inverse&-’(.). Since T = T (X) is considered to be a 
good estimator of 0 = 0(F) ,  then it follows that&(r) is a 
good estimator o f ~ ( 0 ) .  Suppose [ I ,  g] is an equal-tailed 
(1 - a)100% approximate confidence interval for 0(F)  
constructed using any of the available methods, i.e., nor- 
mal theory of Eq. ( 3 ) ,  root bootstrap of Eq. (18), percen- 
tile bootstrap of Eq. (25), bootstrap-t of equation Eq. 
(29), or bootstrap BC,. 

Observe thatg.(‘-r) is just a statistic based on our sam- 
ple, and it can be “bootstrapped” as well. In other words, 
the sampling distribution of&(T) can be estimated, and 
an equal-tailed (1 - a)  100% confidence interval fora( 0) 
can be formed by the same method used to obtain the in- 
terval for 0(F) ;  say this interval is b 4 J .  It then follows 
that &’ (y l ) ,o l  (yu)] is an approximate (1 - a)100% 
confidence interval for 0 ( F ) ,  and this new confidence in- 
terval should be compared to the interval [ L ,  241 found di- 
rectly. If the two intervals for 0(F)  are identical, then the 
property of “transformation invariance” holds; if not, it 
makes sense to ask, “Which of the two intervals is more 
accurate?”, in which case one is led to search for an “opti- 

mal” transformation,&( .), to use in connection with the 
construction of confidence intervals. 

In some isolated cases, e.g., Fisher’s hyperbolic tan- 
gent transformation for the correlation coefficient (cf. 
[20],  p. 54 and p. 163, and [SS]), a transformation is 
available in the literature that approximately “normal- 
izes” the estimator T(X) and “stabilizes” its variance; in 
other words, the estimatorg(T) has a distribution that is 
closer to being Gaussian than the distribution of T(X) ,  
and the variance of J( T )  does not depend on the parame- 
ter 0(F) ,  at least not significantly. As a consequence, such 
a transformation is “optimal)) to use in connection with 
the construction of coiifidence intervals based on the nor- 
mal approximation of Eq. (3). 

In most cases, however, it may not be possible to si- 
multaneously normalize and variance stabilize the estima- 
tor T(X)  by a single transformation. As it turns out, the 
“optimal” transformation associated with constructing 
bootstrap-t confidence intervals should primarily achieve 
variance stabilization. Now if VwF(‘-r) were known as a 
function of 8 ( F ) ,  then an approximate variance-stabiliz- 
ing transformation,J( .), could be found by the &method 
(cf. [37] ,  [20]). The problem of course is that VayF(r) 
and 0 (2;)-as well as the functional relationship between 
the two-are generally unknown! 

Nonetheless, an approximate c‘optimal)) transforma- 
tion for variance stabilization can be computed using an 
iterated bootstrap-much like the iterated bootstrap de- 
scribed in the previous subsection on studentization-to 
calculate estimates of VayF( r )  from each resample; details 
can be found in [20] (p. 163), and in [58]. It should be 
noted that if an iterated bootstrap is carried out to calcu- 
late the variance-stabilizing transformation, then there is 
no need to do another iterated bootstrap to get the boot- 
strap-t confidence interval. In other words, there is no 
need for the studentization any more since t he  variance 
can be considered constant, and a bootstrap confidence 
interval forg(0) based on the root method of Eq. (18) 
would be obtained and then inverted (usingd-’) to give a 
good bootstrap confidence interval for 0(F)  with im- 
proved accuracy. 

Subsampling and the Jackknife 
While one reason for the success of the bootstrap is its 
widespread applicability, there are certainly situations 
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where the bootstrap is not applicable; for example, as was 
briefly mentioned earlier, in the case where the statistic 
T(X)  is linear, i.e., of the sample mean type, the validity 
of the bootstrap crucially hinges on whether the statistic 
is asymptotically normal or not. As a matter of fact, a 
huge amount of statistical literature on the bootstrap has 
accumulated since Efron’s [ 141 pioneering paper, the 
main focus of which was to show the applicability of the 
bootstrap in many different settings; [ 81 and [ 31 are two 
very important early papers in this connection (more 
bibliographical comments are presented later in this 
article). Note that the jacldcnife of Quenouille [48] and 
Tukey [55] is a technique closely related to the bootstrap 
and is generally thought of as the precursor of bootstrap 
(see Efron’s original paper [ 141). Nevertheless, al- 
though the jacldcnife has been around longer than the 
bootstrap, to motivate the subsequent discussion on the 
jackknife let us now discuss some examples where the 
bootstrap does not work. 

The Bootstrap Does Not Always Work! 
Examples of failure of the bootstrap have been provided 
from the very beginning of the development of boot- 
strap methodology. One of the earliest counterexamples 
[ 81 concerns the case where the data, X, ,  . . . , X,, are i.i.d. 
unifom (0, e), and T(X) = max{X,, . . . ,X,>. Another in- 
teresting example of bootstrap failure is given [ 11 when 
T(X) is the familiar sample mean x of i.i.d. dataX,, ..., 
X ,  but where the data come from a distribution being in 
the domain of attraction of a (non-normal) stable law. 
For example, if X ,  ,..., X ,  are i.i.d. from a standard 
Cauchy distribution then the bootstrap will behave er- 
ratically even if the sample size is huge. Of course, here x is not asymptotically normal so the central limit theo- 
rem breaks down as well; x i s  itself Cauchy-distributed. 
More examples of bootstrap failure are given in [41], 
[43], and [44]. 

The reason the bootstrap may fail can be pin- 
pointed to the fact that the resamples are not exactly 
generated from Fn(as the original sampie was), but are 
generated from F instead. Although F is a consistent 
estimator of the true distribution F it may still miss some 
feature of F that crucially affects the distribution of 
T(X). The question now is: “Can we find samples/re- 
samples exactly gene ra t ed  f r o m  F ,  and-if 
yes-where?” If we do not insist that we find (re)sam- 
ples of size N ,  and we are content with finding 
(re)samples of size b (with b < N ) ,  then the answer is 
that we can indeed find (re)samples of size b exactly 
generated from F simply by looking at difjemnt subsets of 
our or@nal sample X. But looking at different subsets 
of our original sample amounts to sampling without 
replacement from the observations X,, . . . , X ,  to get 
(re)samples (now called subsamples) of size b; this 
leads us to subsampling and the jackknife. 

The Jackknife Idea 
Consider sampling without replacement from the observa- 
tionsx,, . . . ,X,, to get asubsanple of size b, where of course b 
< N. If b = N - 1, this is exactly the original jackknife of 
Tukey [ 551, and there are only N possible different subsam- 
ples (and their permutations); cf.[14], [16], and [20] for 
details and an extensive list of references. Since these 
subsamples are all equally probable under the sampling- 
without-replacement scheme, formulas much like Eqs. 
(15), (16), (19), and (20) can be constructed to estimate 
bias, variance, and dstribution of the statistic T ( X ) ;  these 
will be given in a more general form in what follows. 

The jacldcnife with b = N - 1 is definitely less 
computer-intensive than the bootstrap, which was perhaps 
one of the reasons its development preceded that of the 
bootstrap; see e.g., chapter 11 of [20]. Nevertheless, one 
can take an arbitrary 6, not necessarily equal to N - 1, yield- 
ing the so-called deleted jackknife, where d = N - 6; see 
e.g., [ 5 11. Observe that the number of possible subsamples 
now rises to + (and their distinct permutations), and 
again a Monte Carlo method could be employed to ran- 
domly chose a smaller number, say B, among these 
subsamples to be included in the jackknife procedure. 

Statistics from i.i.d. data are usually symmetric in their 
arguments, i.e., if is a permutation of X, then 
T X = T( X). For example, if T( X) = ‘3(j), then T(X) 
is certainly symmetric, and thus insensitive to dfferent 
permutations of the same dataset; in other words, the sta- 
tistic T re-evaluated over all possible subsample of size b 
will take on (at most) $+ different values. Now it is a 
very encouraging finding thrt, if both b and N are large, 
but with b being small with respect toN (i.e., if b + 00 but 
b/N 0), subsampling generally remedies the failure of 
the bootstrap in most cases (including all the examples 
mentioned earlier); cf. [43]. 

In some sense, subsampling can be thought to be even 
more intuitive than the bootstrap, because the subsam- 
ples are actually samples (of smaller size) from the @ue 
distribution, F,  whereas the bootstrap resamples are sam- 
ples from an estimator ofF. As can be shown, distribution 
estimates based on subsampling are valid in a wider range 
of situations than their resampling (i.e., bootstrap) ana- 
logs, even in cases where the statistic T(X) is not asymp- 
totically normal; however, they do not possess the 
property of higher-order accuracy, and this is essentially 
due to the fact that the subsampling size is b and not N. 

It should be noted here that sampling with or without 
replacement from the original sample population, {XI, 
. . . , X,}, would make no difference in practice if b is very 
small with respect to N (i.e., if b / J X  + 0); in other 
words, there is no practical difference between resam- 
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pling and subsampling as long as the resample/subsainple 
size, 6, is very small (i.e., b/m = 0). This phenomenon is 
analogous to the binomial approximation to the hyper- 
geometric in sampling from a finite (but large) popula- 
tion. Therefore, the bootstrap (i.e., sampling with 
replacement) with smaller resample size b will also work 
in many cases where the bootstrap with resample size N 
fails, but will lack the property of higher-order accuracy 
possessed by the standard bootstrap that has resample 
size N .  To avoid possible confusion, the bootstrap with 
resample size b will not be discussed any further here; cf. 
1411, 1431, [44], [6], and [9] for more details. 

This difference between the subsample size and the 
original sample size has an additional consequence, 
namely, that a rescaling is required to compute the 
subsampling distribution estimator. Suppose that the 
variance of T ( X )  is approximately c2/ lz i ,  for large N,  
where c is some constant, and z, is a fimction of the sam- 
ple sizeN. It is intuitively true, therefore, that the variance 
of T calculated from a sample of size b would be approxi- 
mately c 2  /z,” , provided that b is large too; here the need 
for a re-scaling becomes apparent. 

The functional form of z, is problem-specific and 
should be calculated for the problem at hand; typically, z, 
= N“, with a being a constant in (0,l). In regular cases, 
e.g., if T ( X )  is the sample mean, sample median, sample 
variance, etc., we have that a = Yz and z, = m. If z, is 
difficult to calculate, or if its form (say, the exponent a) 
depends on the unknown distribution F ,  then it is neces- 
sary to estimate z, from the data at hand, which can be 
achieved by a preliminary round of subsampling [7]. 

The subsampling procedure can finally be summarized 
as follows: 
A Randomly choose B subsamples, X*(’),.. ., X*@‘), 
among all the possible subsamples of size b of the sample 
population {Xl, ..., X,}. Suppose the ith subsample is 
X*(’) = (x1*(’), . . . , &*(’I) ; the final step now is to evaluate 
the statistic T over each of the chosen subsamples, creat- 
ing the pseudo-replications T (X*(’)),. . ., T (X*(”)). 

Confidence Intervals Based on Subsampling 
The subsampling estimates of Bias,(T), VarF(T), 
Dist,,(x), and Dist,,(x) are Bias*(T) , Vav*(T), 
Dzst;; (x), and Dzst,h-,,F (x) respectively which are pre- 
sented below: 

and 

(32) 

where v = bN/(N - b )  ; note that if B = and Monte 

Carlo randomization is not used, i.e., all possible subsam- 
ples are talen into account, the approximation signs (=) 
above can be replaced by equality signs. 

The reason we have z, instead of the more intuitive z6 in 
Eqs. (30), (31), (32), and (33) is that, althoughthevari- 
ance of T calculated from an i.i.d. sample of size b is ap- 
proximately c2//z,”, i.i.d. samples presuppose an infinite 
underlying population; in other words, i.i.d. samples are 
taken with replacement. Our subsamples, X*(l),. . ., 
X*(”), are size b samples talen without replacement from a 
$nite population of size N.  Therefore, the variance of T 
calculated froin one of our subsam les is approximately 
c2//z:, and not c2/z,” ; the ratio T,” f.,” is the so-called$- 
nitepopdation cowection, which notably becomes close to 
one pmvided b is much smallev than N .  

To briefly sum up the existing results in the literature on 
subsamplung, note that die estimates proposed in Eqs. (30), 
(3 1) , ( 32), and (3 3) are accurate provided the sample size N 
is large, and that one of the following three condtions is met: 

(a) T(X) is ahearstatistic (i.e., T ( X )  = e($), with e(.) 
being linear), and the population distribution F is known to 
be normal (with some unknown mean and variance); for 
example, T ( X )  may be the sample mean or maybe a 
trimmed mean (but not the sample median!). In this case, 
the ordmary jacldinife (with b = N -  1) would work [20] . 

(b) The estimator is not necessarily that simple, but it 
is asymptotically normal and satisfies the “regularity)) 
condition that zN = m; for example, T(X) may be the 
sample medmn. hi this case we would have to choose ab such 
that both b and N - b are large, e.g., b = LlzN], where lz is a 
constant in (0,1), and L.1 denotes the integer part; see [Sl]. 

(c) The estimator is arbitrarily complex, not necessar- 
ily asymptotically normal, and T= is not necessarily m; 
here we would have to choose a b such that b is large, but 
b/N is small, e.g., b = L N h ] ,  where lz is a constant in 
(0,l). Note that in this case N and N - b will be of the 
same approximate magnitude, thus ”r’ = b; therefore, Eqs. 
(30) ,  (31), (32) and (33) wiHbevalidwith7,usedinstead 
of z,, which is perhaps more intuitive; see 1431 for more 
details on this general case. 

Under one of the above condrtioiis, the approximations 
proposed in Eqs. (30), (31), (32), and (33) are accurate 
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and can be used for the construction of approximate con- 
fidence intervals for fl(F); as is typically the case, the ap- 
proximations will be good if the sample size, N, is 
appropriately large. Note that in the usual case where we 
do not h o w  the form of the population Istribution, F,  we 
have to use the settings of conditions (b) or (c) above, i.e., 
to assume that both b and N - b are large. Now if the esti- 
mator T(X) is known to be asymptotically normal, then a 
(1 - a) 100% confidence interval for 8(F) can be given by 

1 (34) 

T(  X) - Bias * (T) - z J M ,  

T(  X) - Bias * (T) + Z J m  

where z = z(  1 - a/2) is the 1 - a/2 quantde of the standard 
normal distribution as in Eq. (4). If T(X) is not asymptoti- 
cally normal, then an equal-tailed (1 - a) 100% confidence 
interval for @(E;) based on subsamphg could be constructed 
s d a r l y  to the interval in Eq. (18), i.e., it would be given by 

(35) 

where q*(a/2) and q*( 1 - a/2) are the a/2 and 1 - a/2 
quantiles of the Dist,*,F,, ( x) distribution, respectively. 
Note that if both confidence intervals (Eqs. (34) and (35)) 
are valid, i.e., if T(X) is asymptotically normal, the interval 
of Eq. (34) would be considered to be the one that is more 
acairate; that is, its coverage probability would be closer to 
the desired value of 1 - a. In other words, whereas the 
(studentized) bootstrap  beat^" the normal approximation 
(if a normal approximation is available), the jackknife does 
not. Nevertheless, subsampling (and the interval of Eq. 
(35) in particular) is more widely applicable than either the 
bootstrap or the normal approximation, as it is valid in the 
general setting of condition (c) above; note that, as dis- 
cussed earlier, the bootstrap is typically valid only under 
the more restrictive conditions of (a) or (b) . 

Non4.i.d. Data: Complicated 
Data Structures 
What has been Iscussed so far hinges on thc assumption 
that the data X = (XI,. .., X,) represent an i.i.d. sample 
from a population with (unknown) distribution, F.  Nev- 
ertheless, the assumption of i.i.d. data can break down, ei- 
ther because the data are not independent or because they 
are not identically distributed, or both; we now discuss 
what can be done to circumvent this difficulty and de- 
scribe procedures that are valid even if the i.i.d. assump- 
tion is somehow violated. 

Data that are not Identically Distributed: 
The Regression Example 
To fix ideas, let us consider the simplest example. Sup- 
pose the X,, i = 1 ,..., N,  are observations from the 
straight-line regression model X, = y + PT, + E,, where 

the E ~ S  are assumed to be i.i.d. with mean zero, and Tj, i = 
1,. .., N,  :re known (nonrandom) design points. 

Let q, p denote the least squares estimates of the inter- 
cept, y, and of the slope, p, respectively, and suppose we 
want to construct a confidence interval for one of the two 
parameters, say j3. It is well-known that, regardless of 
whether the :errors” E,, i = 1,. . . , N,  are normally distrib- 
uted or not, p is a reasonable estimator of p; as a matter of 
fact, typically p will be consistent for j3, i.e., for large sam- 
plc sizc N, 6 will bc close to thc true value p with high 
probability. 

Nevertheless, the standard textbook confidence inter- 
val for j3 is based on the assumption that the E ~ S  are nor- 
mal; if the normality assumption is questionable (for 
example, a histogram of the shortly-to-be-defined residu- 
als e,, i = 1,. . ., N, may exhibit evidence of noimormahty, 
e.g., pronounced skewness), then an alternative inethod 
of constructing the confidence interval must be found. 
Thc bootstrap may offcr this wcll-needed alternative. 
However, note that theX:s are not i.i.d.; in particular, EXj 
= Yo which varies with i = 1,. . ., N.  In other words, al- 
though the X;’s are independent, they are not identically 
distributed; thus, naive resampling of the Xis cannot be 
applied here. 

To actually apply the bootstrap in this setting observe 
that, whereas in the previous sections the data Xj ,  i = 
1,. . . . . . , N,  were i.i.d. with unknown distribution, F,  here 
it is the errors E,, i = 1,. . . , N, that are i.i.d. with unknown 
distribution that we may denote by G( .). Although the er- 
rors, E,, are not directly observable, note that p will be 
close to the true value: j3 (and similarly 7 will be close to the 
true value y) , and thus f + iT, will be close to y + j3Tj, for 
any i = 1,. . ., N. It follows that the ei ZX, - (q + Dr.), i = 
1,. . .,N, i.e., the miduals from the least-squares fit, will be 
good approximations to the unobservable i.i.d. errors, E,. 

So we may treat the residuals, e,, as being an i.i.d. sam- 
ple from distribution G(.), prmided the e;)s have mean 
zero; note that although G(.) is unknown, we do know 
that G(.) is a distribution with zero mean. Thus, we are 
led to define the mean-corrected residuals 
6 ,  = e, - N-’ E” e . We can now invoke the bootstrap 

principle and treat the E,’s as if t h y  represented an i.i.d. 
sample from distribution G(.). Let G( x )  be the einpirical 
distribution of the  i j ’ s ,  i.e., let 

,. 

,. 

k=l k 

6(x)=+x; l l (6 ,  I,>+(#ii <x>. 
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As a matter of fact, the inclusion of the unknown (and 
to be estimated) intercept parameter, y, in the regression 
model is sufficient to guarantee that the original residuals, 
e,, do have mean zero, and thus tZ  = ec in this case. Never- 
theless, it is important to point out that, if for some rea- 
son (e.g., a more complicated regression function of the 
type X ,  = r(TJ + E$), the residuals from the fitted model 
are not forced to have mean zero, then the corresponlng 
bootstrap inferences will not be valid. The bootstrap re- 
sampling in this case can be done as follows: 
A. Draw B i i d .  samples E*(’),. . ., E*@) (each of size N) 
from the sample population consisting of the mean- 
corrected residuals ; note that to form the 
Lth resample E*@) =ti;(’), . . . :A’)), we sample with re- 

placement from the set {i, , . . . , E N  >, or, in other words, 
we tale an i.i.d. sample of size N from a population with 
distribution G. Use the Fzth resample E*(’) to generate 
pseudo-data X,*(’) = + + i = 1,. . . , N ,  where 
the r ,  p, are the previously (and once and for all) calcu- 
lated least-squares estimators. Now apply least-squares 
estimation A to die L t h  pseudo-dataset to obtain the estima- 
tor p*@); repeat this procedure for each of the kth resam- 
ples, k = 1 ,..., B.  
Having performed the above Monte Carlo experiment, 
we are now in a position to formulate estimates of the bias 
and variance of p sirnilar to Eq. (15), i.e., 

E l  , . . . , t 

and an equal-tailed root (1 - a)lOO% bootstrap confi- 
dence interval for p similar to the one in Eq. (18), i.e., 

here 8*(a/2) and d*( 1 - 4 2 )  are the a12 and 1 - a12 

quailtiles of the  distributionDzst. (x) =B-’ 
B_,G,P CBI 1 ( j “ ( h )  - p 5 x) = B-l (#j’(’) 5 x + B). 

Note that differe.nt confidence interval constructions 
are possible here as well, in analogy to what was discussed 
for the i.i.d. bootstrap at the beginning ofthe article. As a 
matter of fact, using the trick of reducing the non-i.i.d. 
situation to an i.i.d. situation (by loolung at the residuals) 

permitted us to use the bootstrap methodology for i.i.d. 
data with almost no alterations. This is actually a general 
technique, applicable in all settings where the problem 
can be reduced to i.i.d. (or almost i.i.d.) residuals. 

In general, the regression model might be more com- 
plicated, e.g., the relation ofX, to Ti might be nonlinear, 
and described by Xi = T(T,) + E,, where the r,’s are i.i.d. 
with mean zero, the Tis are lmown and nonrandom, and 
r(.) is an unknown function; perhaps r is known, except 
for some parameters associated with i t ,  e.g., 
r ( y )  = ercpT , with y, p unknown as before. If a11 estima- 

tor f (  .) of r( .) can be constructed from the data, the re- 
siduals x, - F(T,) should be almost i.i.d. (and can be 
centered so that they have mean zero), so the i i d .  boot- 
strap methodology described above applies immediately. 

It should also be pointed out that in regression analy- 
sis, besides estimation of the unknown parameters y and p 
(or r(.) in general), the practitioners are typically inter- 
ested in predicting the value of X corresponding to a fu- 
ture r-point and attaching a measure of accuracy to their 
prediction. The bootstrap can help out here as well, and 
can be successfully employed for the construction ofpve- 
diction (rather than confidence) intervals; see, e.g., [20] 
(p. 247) and [31]. 

At this point it should also be mentioned that the re- 
gression model could be “bootstrapped” by bootstrap- 
ping the pairs, (X$, ‘Y,), i = 1 ,..., N ,  rather than the 
residuals; see [20] (p. 113) for a discussion. Note, how- 
ever, that “bootstrapping pairs” implies in effect that the 
Y, points are not at the choice of the person designing the 
experiment, but that they are random. 

Data that are not Independent: 
The Autoregressive Time-Series Example 
Another way to relax the assumption of i.i.d. data is to as- 
sume that the data are identically distributed but not inde- 
pendent; this is the essence of the stationarity 
assumption. In particular, let X,, X,, . . . be a sequence of 
random variables; the sequence is called stvictly stationmy 
(or just stationary) if the joint distribution of the random 
vector (Xi, X,, . . . , X,) is identical to the joint distribution 
of the random vector (X,, + I, X,, + 2,. . ., X ,  + J, for any 
positive integers m, Tu.  

The simplest example of a strictly stationary sequence 
is given by the autoregressioii model (of order one) that 
satisfies the recursionX, = PX, - + E,, where the E ~ S  are 
i.i.d. with mean zero; for simplicity, let us assume that the 
X,’s have mean zero, so no constant term is included in the 
right-hand side of the above recursion. (Note however 
that, although the theoretical mean is zero, the sample 
mean of the X-dataset, i e., N-’ x!l X z  , will not be iden- 

tically .mu. Worlung with the mean-corrected X,’s, i.e., 
defining xz = X I  - N-’ c” %=I X z  and working with the 
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model *c = + E, instead, is recommendable in 
practice; it also has the convenient side-effect of forcing 
the residuals from the fitted model, Xz = + E,, to 
have mean zero, so that no recentering would be required 
(see 11581 as well) .) It is also usually assumed that IpI < 1, in 
which case we may consider that theX,’s were obtained in 
a “causal” fashion, by letting i = 1,. . ., N in the defining 
recursion and with some proper choice of X,. 

It is apparent that since the parameter p can be esti- 
mated consistently (see, e.g., [47]), the i.i.d. errors, E,, i = 
1, ..., N ,  can be approximately recaptured; in other 
words, the stationary data problem at hand can be re- 
duced to an (approximate) i.i.d. problem, in the same 
spirit as in the regression example presented earlier. As a mat- 
ter offact, by making the formal idendication, =Xz- I, fori 
= 1,. . ., N, the bootstrap algorithm described in the sec- 
tion on the regression example applies vevbatim here as 
well, although the T, are no longer nonrandom; for more 
details on the bootstrap for linear or nonlinear autore- 
gressive time-series models (including cases where the or- 
der of autoregression is infinite) see [lo], [28], [31], 
~381, ~581. 

Data that are not too Dependent: 
Weakly Dependent Observations 
Suppose that no plausible model (such as the autore- 
gression just discussed) is available for the probability 
mechanism generating our stationary observations, 
XI,. . .,X,; in this case, the problem must be approached 
in a nonparametric fashion. Nonetheless, in order to 
have consistent estimation of a paramter, 8, by a statistic, 
T ( X ) ,  i.e., in order to be able to say that “the more data 
available, the more accurate our inference is,” the obser- 
vations should not be too strongly dependent; for exam- 
ple, in the extremely dependent case whereX, = Xi, forj  
= 1,2 ,.,., N ,  obtaining more data (i.e., increasing N )  
does not tell us something we do not already lnow by 
looking at X, alone. 

So an assumption of weak dependence must be made 
in order to malie consistent estimation possible. One such 
assumption is m-dependence: the stationary sequencex,, 
X,, . . .is called m-dependent if, for some integer m, the set 
of random variables ( X I ,  X,, . . . , X,) is independent of the 
set of random variables (X,+k+l,Xn+k+a,...X,,+h) for anyn 
and any k 2 m; thus, independence can be thought of as 
O-dependence. Another weak-dependence assumption is 
stvovzg mix in^: although the precise definition is a bit tech- 
nical [39, 431, the intuitive idea is that observations far 
apart (in time) should be almost independent; more care- 
fully, a stationary sequence, x,, x,, . . ., is strong mixing if 
the set of random variables (X,, X,, . . . , X,) IS appi .0~~- 
mately independent of the set of random variables 
(Xn+b+l, X,+h+2,. . ., XZn+,J, for any n, as long as k is large 
enough. Note that an m-dependent sequence is definitely 
strong mixing; just let k 2 m in the above. 

Subsampling Weakly Dependent Observations 
Let X,, X,, . . . be a strong-mixing stationary sequence of 
random variables, and suppose our data consist of the 
stretch X,,X,,. . .,XW Note that the order ofthe observa- 
tions in our sample, Xi, X,, . . . , X,, is important now that 
theX,’s are serially dependent, whereas it was not impor- 
tant in the case the X,’S were independent. 

So consider the N -  b + 1 subsamples characterized by 
the property that each contains b comecutive observations 
from the original sample X,, . . . , X,; in this sense, the time 
oyder ofthe obsevvations is maintained within the subsumples. 
For example, the ith subsample X*@) would consist of the 
block of consecutive observations X,,. . ., X, + - ,, where 
now i is a positive integer with i 5 N - b + 1. Note that 
now the number of subsamples consisting of b consecu- 
tive data is N - b + 1, which is rather small compared to 

b I( N - b ) ’  ’ thus, Monte Carlo randomization typically will 
not be needed and we would choose B = N - b + 1 
subsamples (i.e., all of them) to be included in the 
subsampling procedure as outlined earlier. In other 
words, the statistic T would be evaluated over each of the 
B = N - b + 1 subsamples creating the pseudo- 
replications T(X*(’)),. . ., T(X*(B)). 

Interestingly enough, this modification (i.e., loolung 
only at subsamples containing consecutive X,’s) is suffi- 
cient to malie the subsampling methodology work in this 
case where the observations are stationary (and wealdy 
dependent); see [43] for more details. Note, however, 
that the presence of the dependence here forces us to 
function in the general setting of condition (c) presented 
earlier, i.e., we arefoxed to choose a b  such that b is large, 
but blN is small, e.g., b = l N k  1, where I z  is a constant in 

(0,l); standard choices of b would be b = LN”2 1 or 

b = LN1” 1. With such a choice for b, Eqs. (30), (31), 

(32), and (33) would apply here veybatim and they would 
give accurate estimators of bias, variance, and distribu- 
tion if the sample size, N, is large enough. Consequently, 
Eq. ( 3 5 )  would give a valid (1 - a)  100% confidence in- 
terval for 8(F) ,  whereas Eq. (34) would also give a valid 
(1 - a)  100% confidence interval for 8 ( F )  provided the es- 
timator, T ( X ) ,  is known to be asymptotically normal. 

Resampling Weakly Dependent Observations 
Again let us assume that our data consist of the stretchx,, 
X2,. . . ,XN from the strong-mixing stationary sequencex,, 
X2,. . . . Unlike the bootstrap for i.i.d. data, a bootstrap for 
stationary observations would have to somehow main- 
tain the time order ofthe observations as was done in the 
subsampling case discussed earlier. This is the essence of 
the “moving bloclis” bootstrap [29,35]; see also [39] and 
[42] for closely related proposals for bootstrapping de- 
pendent data. 
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Consider the set S = {X*(’), X*(’),. . ., X*(, - + ‘1 >, 
where X*@) = (X,, . . . , X ,  + ’) is the ith subsample defined 
earlier; so S is a set of subsamples. As earlier, here as well 
we require that b is large, but b/Nis small, e.g., b = I N k  1, 
where k is a constant in (0,l). LetR =LN/bj, and let L = 

bIc tlius, L = N if N is divisible by 6, whereas L will at 
least approximate N i f N  is not exactly dvisible by b (be- 
cause N/b is assumed to be large). 

The “moving bloclis” bootstrap can be described as 
follows : 
A Tale a random sample of size Kwith replacement from 
the set S, i.e., randomly choose subsamples X**(’), ..., 
X**(’‘; concatenate the observations found in X**(’),. . ., 
X**(“ into a series of L = b K  observations denoted by 
Y*”(l). Take another random sample of size IC with re- 
placement from the set S, and store it in Y**(,). In the same 
manner, generate Y”*(’), fori = 3,4,. . ., B. Now evaluate 
the statistic T over each of the Y**@), for i = 1,2,3, .  . ., B, 
bootstrap pseudo-series to get the pseudo-replications T 
(Y**(’)), ..., T (Y””‘”)). 

Note that the requirement tliat b is large is only perti- 
nent if the data are indeed dependent; if the date are i.i.d., 
b can be talien to equal 1, and the “moving bloclts” boot- 
strap actually reduces to the standard i.i.d. bootstrap de- 
scribed at the beginning of this article. If the data are just 
suspected to be serially dependent, then the “moving 
blocks” bootstrap (with large b as opposed to b = 1) can 
be employed in order to be on the safe side. 

The “moving blocks” bootstrap estimates of BiasF( r) ,  
VavF(T), D i ~ t ~ , ~  (x), and DistT - ep(x) are BZus‘* (T), 
Vav**(T), Dist;,, (x), and Di~t;- , ,~ (x), respectively, 

which are presented below: 

Bi@f**(T)=-CT(Y**( ’ ) ) -T (X)  l B  
B z=1 (39) 

Disty,,(x) = - c l ( T ( Y * * ( ’ ) ) < x ) =  l B  
B z = 1  

1 B (#T(Y*”(’)) < 2) 

and 

[T(X) - q**Q -a/2),T(X) -4**(cy./2)]: (43) 

where q** (a/2) and q** (1 - a/2) are the a/2 and 1 - a /2 
quantiles of the Dist y,,,, (x) distribution, respectively. 

Note that, as opposed to the subsampling method in 
the previous subsection, no rescaling is needed for the 
“moving blocks” bootstrap (as it was not needed in the 
i.i.d. bootstrap as well); this is because L = N,  and there- 
fore zJzN = 1. In addtion, the “moving blocks” bootstrap 
shares with the i.i.d. bootstrap the property of higher- 
order accuracy as was lscussed earlier. In other words, if 
T(X) is asymptotically normal, the ‘Cmoving bloclis” 
bootstrap can be applied to an appropriately “studen- 
tized” version of T(X)  to yield confidence intervals that 
are more accurate than the intervals obtained from the 
normal approximation; cf. [30] and [23]. Nevertheless, 
there are situations where the “moving blocks” bootstrap 
would not be applicable and subsampling would provide 
the only solution; for example, a requirement for the 
“moving blocks” bootstrap to “worli” is that z, = m, 
i.e., that the variance of T(X) is (for large N) approxi- 
mately proportional to 1/N, and that T ( X )  is indeed 
asymptotically normal [49]. 

A “Difffculf “Example: Nonparametric Confidence 
lnfervals for fhe Specfrum 
As before, our data consist of the stretch X,, X,, . . . , X ,  
from the strong-mixing stationary sequence X,,  
X,, . . .which for simplicity we now assume to have mean 
zero, i.e.,EX, = 0, for anyn. LetR (s) = EX,,XI,l denote 
the autocovariance at “lag” s; as a consequence of strong 
mixing, it can be shown thatR(s) + 0 as 1s I + -. Ifwe as- 
sume in addition that the convergence, R (s) + 0, is fast 
enough such that E:=- p( s)1< -, then we can define 

the spectral density hnction f( w) = R( s)ePn” ; 

herewisapointin [0,2z], andjistheimaginaryunit,i.e., 
43. 

Suppose that the problem at hand is interval estima- 
uon off(w,), where wo is a point of interest in [0,27c]; 
thus, the unlmown parameter of interest is 8 = f (wo). 
Suppose also that for h s  purpose we decide to employ 
Bartlett’s spe5tral density estimator given by 
f (  w) = c,=-- R( s) h ( s)e-pJ , where hM(s) is Bartlett’s 
lierne1 defined by 

s =-- 

Similarly t o  subsampling weakly dependent 
observations, an equal-tailed root (1 - a)100% confi- 
dence interval for 8(F)  based on the “moving blocks” 
bootstrap would be given by 
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and k( s) is the sample autocovariance at lag s given by 

It is well lcnown [47] that, under some regularity con- 
ditions, f( w) is asymptotically normal, and that 
vnr(f’(w))~~f2(w)(l+q(w)), if N is large, 

where q(w) = 0 if w f O(modn) and q(w) = 1 if w = 
0 (modn). It is also well known that, A to minimize the mean 
squared error of the estimator, f( w), we should choose 
M to be approximately proportional to M I 3 ;  this is be- 
cause the bias off(  w) is approximately (for IargeN) pro- 
portional to 1/M. So let us choose M whereA is 
some positive constant; thus 

(44) 

With this choice o f M  the variance o f f (  w) becomes ap- 
proximately (for large N )  proportional to N-’I3; in other 
words, the variance of T ( X )  is @r luge N) approximately 
proportional to and T~ = N’I3. 

Since the variance of T(X) is not approximately pro- 
portional to 1/N, it should not be surprising that the 
“moving bloclts” bootstrap does not apply here. A gen- 
eralization of the “moving blocks” bootstrap (the so- 
called “blocks of bloclts” bootstrap) was introduced in 
[45] in order to handle this “difficult” example; see also 
[21] for a different approach-familiar to us from the re- 
gression example-based on bootstrapping residuals. 
Nonetheless, the subsampling methodology as de- 
scribed earlier does apply, provided we choose b such that 
b is large, but b/Nis small, e.g., b = [ P I ,  for some con- 
stant k in (0,l); see condition (c) presented earlier. To 
elaborate, let the ith subsample X*(’)consist of the obser- 
vations X,, .. ., X, + - ’; applying the statistic T on the 
subsample X*@) amounts to letting 

(45) 

&(s)  =o, if 1x1 > b. 

In other words, to calculate T(X*(’ ) )  we focus attention 
on the size b subsample, X*(’), and all data belonging to 
other subsamples are ignored. Thus, & (s)  is the esti- 
mated autocovariance at lags, where only observations in 

since we chose M = A “ I 3  as the cut-off parameter in 
Bartlett’s kernel when the sample size was N, we chose 

as the cut-off parameter when considering our 
subsamples of size b. 

tho subsamplc X*(’) are used in the estimationj similarly, 

Using Eq. (45) we can calculate T (X*(’)) fori = 1,. . ., 
B (withB =N-b  + l),andemployEqs. (30), (31), (32), 
and (33) to get accurate estimators of bias, variance, and 
distribution if the sample size, N, is large enough. Conse- 
quently, Eq. (35) would give valid (1 - a)  100% confi- 
dence intervals for 0 = f (wJ; also, because of the 
asymptotic normality of T ( X ) ,  the intervals in Eq. (34) 
would also have the correct (1 - a)  100% coverage of the 
unknown 8 =f(wo) asymptotically. Note that, using the 
subsampling methodology just described, a (1 - a) 100% 
uniform confidence band for the whole unknown fimc- 
tion, f(w), w E [0,2n], can be constructedwith almost no 
extra effort; see [46]. Having such a confidence band 
would, for instance, immediately permit us to test the hy- 
pothesis that the spectral density is of a conjectured shape, 
i.e., to test whetherf(w) =&(IQ), for allw E [0,2n], where 
fo( .) is a function of interest; for example, taking fo( .) to 
be a constant function leads to a test for “whiteness” of 
the X-sequence. The test would reject the hypothesisf = 
fo if it were observed thatfo(w) is not covered (for all w E 

[ 0,2n] ) by the constructed uniform confidence band. 

Some Concluding Remarks 
Although confidence intervals for the spectral-density ex- 
ample dmussed in the previous subsection can be con- 
structed using various methods, the beauty of the 
resampling and subsampling data-analysis methodology 
is its simplicity and generality. Thus, the moral of the 
“bootstrap philosophy” as described so far can be summa- 
rized as fo!lows: If the jeneral statistic T can be computed 
from the sample X ,  then it can certainly be re-computedpom 
pseudo-samples (subsamples, resamples, etc.) and this is 
enou,h topin valuable infomation on the accuracy of T ( X )  
as apoint estimate of 0-by an implicit estimation of the vari- 
ability of T ( X )  acrosssumples. In addition, it can be argued 
that the bootstrap and jackknife are most useful in 
nonparametric situations where a parametric model is not 
available to guide our calculations, and we have to let “the 
data do all the tallung.” 

In terms of comparing resampling to subsampling, 
what could be said in general is that subsampling is 
more widely applicable, covering even situations where 
the bootstrap fails. The realm of applicability of resam- 
pling is nevertheless quite vast, and it can be said that 
when the bootstrap works, it works very well indeed, 
outperforming other concurrently available methods 
such as the normal approximation. Looking in particu- 
lar at the case elaborated upon in the first two sections of 
this article where we have i.i.d. dataX,,X,,. . ., X,, if the 
statistic of interest, T ( X ) ,  is linear, then the bootstrap 
will work only if T ( X )  is asymptotically normal with 
variance asymptotically proportional to 1,”; if not, then 

“rule of thumb)) can be applied in the case where we have 
weakly dependent stationary observationsX,,X,,. . . ,X,, 
and the statistic of interest is the sample mean (or simi- 
larly well-behaved statistics-see, e.g., [40] for an exten- 

subsclnipling m w ~ t  be used instoad. Thc same general 
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sion of the notion of a linear statistic calculated from 
dependent data) : the (moving blocks) bootstrap will not 
work if the large sample distribution of our statistic is not 
normal, or if the variance of T ( X )  is not asymptotically 
proportional to 1/N, in that case, subsampling (in its 
block form) wust  be used instead. 

hical Comm~nts 
As of this moment, there are six published books on the 
bootstrap: the original monograph of Efron [16]; the 
textbook by Hall [25] that contains a lot of material con- 
cerning the higher-order accuracy of the bootstrap and 
the effects of “studentization”; the collection of research 
papers in LePage and Billard [33] that also contains an in- 
troduction to bootstrap ideas by Efron and LePage; the 
textbook by Efron and Tibshirani [20], which presents 
the bootstrap methodology and its applicability in com- 
plex data analysis problems-this is definitely a book that 
the interested reader should consult at some point; the 
book by Hjorth 1271; and the more recent textbook by 
Shao and Tu [ 5 11, which succeeds in wrapping up all re- 
cent theoretical results that are related to the bootstrap 
and the jacldunife. There are also three collections of lec- 
ture notes: Beran and Ducharme [SI provide theoretical 
expositions of the concept of “prepivoting” (a method re- 
lated to %tudentization”) and of bootstrap-balanced con- 
fidence intervals and prediction regions; Mammen [36] 
focuses mainly on the bootstrap for linear models, and 
contains details on a bootstrap variation, the “wild” boot- 
strap, which was introduced in [56]-see also [4] in that 
regard; and Barbe and Bertail[2] consider-among other 
things-the “weighted bootstrap,” which is an interest- 
ing generalization of the standard bootstrap. 

Several review articles are also available in the litera- 
ture: Efron and Gong [ lS]  and Efron and Tibshirani 
[ 191 have a more applied flavor, whereas DiCiccio and 
Romano 1131 give a theoretical treatment; see also the 
interesting reviews by Efron 115,171, andHinkley 1261. 
Swanepoel [53], and Ltger, Politis, and Romano [31] 
review more recent developments and provide discus- 
sion on more advanced applications of the bootstrap 
methodology; both papers also contain an extensive list 
of references. Carlstein [ 121, Ltger et al. 1311, Bose and 
Politis [ 111, and Li and Maddala [ 341 provide reviews of 
the bootstrap for time-series data, while the case of spa- 
tial data and random fields is addressed in the research 
articles by Politis and Romano [40], [43], and [44], and 
Sherman and Carlstein [52]. The reference for most of 
our section on subsampling is Politis and Romano [43], 
which also contains a good number of interesting exam- 
ples where the bootstrap does not work; a critical ac- 
count of bootstrap ideas was recently presented in [57]. 
Some specific signal-processing applications of the 
bootstrap are presented in Thomson and Chave [54] 
and Politis et al. [45]. However, for a detailed overview 
of the bootstrap and its use in signal processing, the re- 

view paper by Zoubir and Boashash [58]  in this issue of 
SPMagazine is offered. 
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