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Abstract

This paper investigates the feasibility of person identification based on feature points extracted from palmprint

images. Our approach first extracts a set of feature points along the prominent palm lines (and the associated line

orientation) from a given palmprint image. Next we decide if two palmprints belong to the same hand by computing a

matching score between the corresponding sets of feature points of the two palmprints. The two sets of feature points/

orientations are matched using our previously developed point matching technique which takes into account the non-

linear deformations as well as the outlier points present in the two sets. The estimates of the matching score distri-

butions for the genuine and imposter sets of palm pairs showed that palmprints have a good discrimination power. The

overlap between the genuine and imposter distributions was found to be about 5%. Our preliminary results indicate that

adding palmprint information may improve the identity verification provided by fingerprints in cases where fingerprint

images cannot be properly acquired (e.g., due to dry skin). � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Automatic human identification has become an
important issue in today’s information and net-
work-based society (Gelsema and Veenland, 1999;
Jain et al., 1999). The techniques for automatically
identifying an individual based on his physical or

behavioral characteristics are called biometrics.
Biometric systems are already employed in a va-
riety of domains that require some sort of user
verification (e.g., for access control or welfare
disbursement programs). Numerous distinguishing
traits that have been used for personal identifica-
tion include fingerprints, palmprints, face, voice,
iris and hand geometry. It is generally accepted
that fingerprint and iris patterns can uniquely de-
fine each member of an extremely large population
which makes them suitable for large-scale recog-
nition (establishing a subject’s identity). However,
in many applications, we only need to authenticate
a person (confirm or deny the person’s claimed
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identity). In these situations, one can also use
different biometric traits such as voice, hand shape
or palmprint.

The science of fingerprints for identification is
well established (Lee and Gaensslen, 1994). The
work was pioneered by Galton (1892) who based
his research on Herschel’s data (Cherill, 1954).
Herschel also kept a record of handprints at in-
tervals ranging over long periods which were used
to test the persistence of the ridge characteristics.
Henry’s classification was used in classifying fin-
gerprints (Cherill, 1954) but for hand prints only
a few systems have been advanced (Zhang and
Shu, 1999; Alexander, 1973; Wilder and Went-
worth, 1918). To our knowledge, none of these
have been adopted in practice. While geometry of
hands has been used in biometrics or identity
verification, such systems are not very robust
(Jain and Duta, 1999). Dermatoglyphics is an-
other scientific area where palm patterns (ridge
patterns, creases) are used to correlate them with
medical disorders, e.g., genetic disorders and
Downs syndrome.

This paper investigates to what extent the iden-
tity of a person can be verified based on feature
points extracted from palmprints. Adding palm-
print information may improve the discrimination
provided by fingerprints in cases where fingerprint
information cannot be properly collected (a per-
son’s fingerprint may exhibit cuts or, sometimes, it
may be even missing) (Jain et al., 1999).

2. Proposed method

Given a pair of palmprints, we propose the fol-
lowing palm matching paradigm (see also Fig. 1):

1. Feature point extraction.We define as feature
points those points lying on the prominent palm
lines. However, we do not explicitly extract palm
lines as in (Zhang and Shu, 1999), but use only
isolated points that lie along palm lines. We believe
this is a faster way to extract features and that the
feature point connectivity is not essential for
matching purposes. For each such feature point,
the orientation of its associated palm line is also
computed. The feature points were extracted as
follows:

(i) The palm image is smoothed by replacing
each pixel value with the average of its original
value and the values of its four immediate
neighbors. Smoothing is aimed at removing
local noise and very thin palm lines (the promi-
nent palm lines are 6–10 pixels wide).
(ii) The smoothed image is binarized by apply-
ing an interactively chosen threshold T. All pix-
els whose values are greater than T are regarded
as palm line pixels while the remaining ones
are considered to be part of the background
(Fig. 1(b), (f)).
(iii) A set of successive morphological erosions,
dilations and subtractions are performed in or-
der to remove the compact regions misclassified
as palm lines (Fig. 1(c), (g)). The remaining
foreground pixel locations are subsampled in
order to obtain a set of 200–400 pixel locations
which will be considered to be the feature points
(Fig. 1(d), (h)).
(iv) Each feature point location is adjusted to be
the pixel of maximum average gray value in a
4� 4 neighborhood of its original location. This
operation is an attempt to place the feature
points along the medial axis (which is approxi-
mated by the set of maximum pixel values along
a palm line) of its corresponding palm line.
(v) For each feature point, the orientation of its
corresponding palm line is computed as the di-
rection of the line segment of length 8 which
has the maximum average contrast (absolute
difference value) to its immediate surrounding
(parallel segments placed 2 pixels above and be-
low the given segment).
(vi) Since spurious feature points are still pre-
sent, those points whose contrast (defined in
step (v) above) is among the lowest 30% of all
feature points are removed.
2. Pairwise distance computation. The two sets

of feature points/orientations are matched (as ex-
plained in Section 3) and a matching score is
computed. We define the matching score as a tuple
ðP ;DÞ, where P is the percentage of point corre-
spondences with respect to the minimum number
of feature points in the two sets, and D is the av-
erage distance (in pixels) between the correspond-
ing points. The choice for this matching score was
motivated by the two sources of variation present
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in different palm images of the same subject: (i)
noise introduced by feature point extraction and
(ii) non-linear palm deformations due to various
finger positions.

The P component of the matching score at-
tempts to model the amount of noise present in the
feature point set. Consider for example that S is
the set of ‘‘true’’ feature points along the main
palm lines in Fig. 1(a). Due to image noise and
limitations of the feature extraction procedure, we
can only compute an estimate ŜS of S which is the

set of feature points actually shown in Fig. 1(d).
Some of the ‘‘true’’ feature points could not be
detected, while several spurious points were in-
troduced. If we assume that only 80% of the points
in S could be retrieved in ŜS and the remaining
points in ŜS represent independent noise which are
less likely to have matching points in a different
instance of the same palm, then we might expect to
find about 80%� 80% ¼ 64% (with respect to the
number of ‘‘true’’ feature points in S) point cor-
respondences between two instances of the same

Fig. 1. Palmprint-based identity verification system: (a), (e) Original gray scale image of palms. (b), (f) Binarized palm images. (c), (g)

Palm line pixels resulting from (b), (f) after morphological transformations. (d), (h) About 300 feature points/orientations computed by

subsampling the feature points in (c), (g) along with their corresponding line orientation. (i) 25 out of the 153 point correspondences

found between the feature points in (d) and (h). The matching score is (54%, 4.73).
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palm. The D component of the matching score
models the amount of non-linear deformation
between two instances of the same palm. This is
shown in Fig. 2 where, due to a different position
of the thumb, the main diagonal palm line is
somewhat rotated between the two images. Since
the point matching only takes into account simi-
larity transformations (composition of translation,
rotation and scaling), non-linear deformations will
increase the average distance between the corre-
sponding points. Our approach does not attempt
to model natural palm variations present in dif-
ferent subjects. This is a difficult task, and for
palmprints, we do not believe that the three types

of variation present (natural, noise and non-linear
deformation) could be easily modeled separately.

3. Identity verification. Once the matching tuple
ðP ;DÞ between two palmprints has been com-
puted, the identity verification becomes a two-class
(genuine vs. imposter) classification problem. The
classification task can be treated as constructing a
decision boundary in a 2D feature space (P and D
are treated as two features), or some projection
method can be applied in order to transform the
data into a one-dimensional feature space. We
chose to apply a discriminant analysis to the sets of
intra-class and inter-class (genuine/imposter)
matching scores in order to obtain a one-dimen-

Fig. 2. Feature point matchings (both point positions and orientations are matched) corresponding to the palmprint pair in Fig. 1(i).

The 153 point correspondences found are shown using light gray segments. The six main palm lines which have been matched are

shown inside the solid gray areas. Due to a different position of the thumb in the two palm scans, the diagonal palm lines inside the

ellipsoidal area differ by a non-linear transformation.

480 N. Duta et al. / Pattern Recognition Letters 23 (2002) 477–485



sional ‘‘similarity’’ score for the two palmprints
(see Fig. 3). In this way, the decision rule reduces
to a simple thresholding and the Neymann–Pear-
son rule that minimizes the false reject rate (FRR)
for a fixed false accept rate (FAR) is employed to
compute the ‘‘optimum’’ threshold (see Fig. 4).

3. Feature point matching

As mentioned in Section 2, we represent the
features of a palmprint by a set of points in the
Euclidean plane along with the palm line orienta-
tion at each feature point. Feature point matching

Fig. 3. Matching score tuples (percentage of correspondences vs. average distance between corresponding points) for the 102 intra-

class pairs and 144 inter-class pairs. The line segment is the most discriminant axis (the projections of the points onto this line are most

separable).

Fig. 4. Histograms of the 2D point projections on the most discriminant axis in Fig. 3. There is about 94% discrimination between the

genuine and imposter distributions.
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is the process of geometrically aligning two or
more sets of points derived from images of the
same object. Most studies dealing with point
matching generally agree that if D is a ‘‘distance’’
function between two sets of points A and B, then
the point set B is aligned to the point set A with
respect to a transformation group G (e.g., rigid,
similarity, linear, affine) if DðA;BÞ cannot be de-
creased by applying to B a transformation from G.
We use a least-squares type distance because there
exists an analytical (exact) solution to the align-
ment problem once the point correspondences are
known (Dryden and Mardia, 1998). However, in
order to use a least-squares alignment method one
should find point correspondences between the
two sets. Most of the time, the point sets are au-
tomatically derived from images, so there are no
known correspondences between them. Moreover,
some points may have no correspondence so they
should be rejected as outliers.

We have developed a registration procedure
(Duta et al., 2001) based on a polynomial quasi-
exhaustive exploration of the correspondence
functions (match matrices) space. Its main novelty
compared to techniques previously used in the
literature (Besl and McKay, 1992; Gold et al.,
1998; Feldmar and Ayache, 1996; Bookstein, 1997)
is the way it resolves the shrinking effect (Feldmar
and Ayache, 1996): an unconstrained linear regis-
tration of two sets of points tends to ‘‘shrink’’ one
set with respect to the other since, theoretically,
the ‘‘best’’ alignment is obtained when one point
set is rescaled to become a single point. Our
problem formulation requires a small mean align-
ment error 1 between the two chosen subsets, using
as many point correspondences as possible. Un-
fortunately, if we have less than three correspon-
dences, the MAE is 0 and this should be
compensated for. Therefore, we want to explicitly
specify in the search criterion that a q% increase in

MAE with a p% increase in the number of corre-
spondences is accepted as long as no individual
distance between a pair of corresponding points
exceeds a given threshold. One of the simplest
functionals that captures this trade-off is the ratio
between a compensated MAE and the number of
correspondences:

f ðMÞ ¼ ½MAEðMÞ þ K�=n; ð1Þ

where K is a constant depending on the percent-
ages p, q and the scale of the object (see (Duta
et al., 2001) for the properties of this functional
and how to choose K). If we also impose the
constraint that the mapping is one-to-one, we
implicitly solve the shrinking problem. With a
large number of one-to-one correspondences (and
the assumption that the two shapes are not sam-
pled at very different rates), there can be no
shrinking of one shape with respect to the other.
We denote by A and B the two sets of feature
points to be matched. Following is a high level
description of our registration algorithm.
1. Set Vmin ¼ 1.
2. For every pair of points ðaj1; aj2Þ 2 A� A

For every pair of points ðbk1; bk2Þ 2 B� B, do
steps (i)–(v)
(i) Find the similarity transformation w that
aligns the sets faj1; aj2g and fbk1; bk2g.
(ii) Apply w to all the points in B to obtain B0.
(iii) For every point bk of B0, find its nearest
neighbor NNðbkÞ inA. If the distance between
bk and NNðbkÞ is smaller than a threshold T
and the associated line orientations do not
differ by more than 45� then set a correspon-
dence between the two points. A match ma-
trix M between A and B is constructed in
this way. Since two points from B0 can have
the same nearest neighbor in A, we enforce
the one-to-one correspondence requirement,
that is, allow a point to be linked to its second
to fifth nearest neighbor if the first one can be
assigned to a closer point in B0, and the length
of the link does not exceed T. Recompute the
transformation w that aligns the sets A and B
according to the match matrixM.
(iv) Compute f ðMÞ.
(v) If f ðMÞ < Vmin then Vmin ¼ f ðMÞ,wmin ¼w.

3. Apply wmin to all the points in B to obtain B0.

1 An n-point set B ¼ fðxBi ; yBi Þgi¼1;...;n is said to be aligned

to A ¼ fðxAi ; yAi Þgi¼1;...;n if the sum-of-squares SSðA;BÞ ¼
Pn

i¼1½ðxAi � xBi Þ
2 þ ðyAi � yBi Þ

2� cannot be decreased by scaling,

rotating or translating B. In this case, SSðA;BÞ is called

Procrustes distance between A and B (Dryden and Mardia,

1998), and the ratio SSðA;BÞ=n is called the mean alignment

error (MAEðA;BÞ).
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4. For every point bk of B0, find its nearest neigh-
bor in A. If the distance between bk and its near-
est neighbor is smaller than T and the
associated line orientations do not differ by
more than 45� then set a correspondence be-
tween the two. A match matrix M 0 between A
and B is constructed in this way and enforced
to correspond to one-to-one links.

5. Find the linear transformation wfinal that aligns
the corresponding sets AM 0 and BM 0 .

4. Experimental results and discussion

A small data set of 30 (15 of each of the two
hands) palmprint images of three persons was
collected (12 prints of each of two persons, and 6
prints of the third one). There are various methods
available to take palmprints as recently summa-
rized by Reed and Meier (1990). However, since
we wanted to study palmprints under different
stretchings of palm, these methods did not seem to
be suitable. The method for hand prints which we
use depends on a specially designed handprint box
which allows for differing hollowness of palm.
Namely, the box contains a tough rubber pad
framed on the top of which the subject’s hand is
placed but the rubber is elastic enough for the
hand of the person taking the print to be placed
inside and pressed firmly against the rubber, en-
suring that the whole of the subject’s handprint is
clearly printed. The paper palmprints were scan-
ned using a Hewlett Packard ScanJet 5200 flatbed
scanner at a resolution of 200 dpi (image size
400� 300 with 256 gray levels). The entire palm
was preserved; fingers and thumb were omitted.
Since no electronic sensors were used for the
palmprint acquisition, the impression quality var-
ied; some prints were very homogeneous while
others missed the central palm region as well as
other details. The data were acquired in two ses-
sions separated by a week and three different finger
positions for each hand were used per session.

From each palmprint, a set of approximately
300 feature points was extracted according to the
algorithm presented in Section 2. Subsequently,
for almost each palm pair that could be formed
from the available data (a few pairs were omitted

due to poor palm image quality) a matching score
tuple was computed. As such, the density of the
intra-class (respectively, inter-class) scores was es-
timated from 102 intra-class (respectively, 144)
pairs. We show the alignment of a palmprint pair
belonging to the same hand in Figs. 1(i) and 2 (for
a detailed set of alignment results see http://
web.cse.msu.edu/�dutanico). The different posi-
tions of the thumb in the two palmprints intro-
duced non-linear deformations in the line structure
(see the relative positions of the diagonal lines in-
side the ellipsoidal gray area in Fig. 2). For this
reason, the average distance between the corre-
sponding points associated with this palm pair
(4.73) is larger than the average.

The resulting matching score tuples are plotted
in Fig. 3; the intra-class (genuine) scores are de-
noted by ‘‘�’’ while the inter-class (imposter) scores
are denoted by ‘‘�’’. One can notice that the gen-
uine distribution resembles a 2D Gaussian cen-
tered at about 55% point correspondences and
about 4 pixel distance between the corresponding
points. This corresponds to about 25–30% inde-
pendent noise in each feature point set as discussed
in Section 2. The orientation of the ellipsoidal
cloud is probably due to non-linear deformations,
otherwise the average distance should not increase
when the number of correspondences decreases.
Also, the intra-class matching scores do not seem
to depend on which hand pair (both left hands or
both right hands) is matched. This shows that the
two sources of variation discussed in Section 2
(noise and non-linear deformations) act consis-
tently over the entire set of genuine palm pairs.
However, the percentage of point correspondences
between two palmprints is determined by the
quality of the palm scan; for poor quality scans the
‘‘�’’ cloud in Fig. 3 is shifted to the left.

The inter-class (imposter) distribution also re-
sembles a 2D Gaussian centered at about 35%
point correspondences and about 5 pixel difference
between the corresponding points. The orientation
of the cloud is almost perpendicular to that of the
genuine distribution cloud. This type of depen-
dency between the percentage of point correspon-
dences and the average distance between
corresponding points is mostly encountered when
matching two sets of random points: the larger the
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number of point correspondences, the greater is the
distance between the corresponding points, denot-
ing that there is no clear good match between the
two sets. The overlap between the genuine and the
imposter distributions (the ‘‘�’’ points inside the
‘‘�’’ cloud) is primarily due to poor quality images
in which the percentage of noise is about 40%.

The direction which best discriminates the
genuine distribution from the imposter distribu-
tion is shown in Fig. 3 and is roughly parallel to
the main axis of the genuine distribution. By
projecting all 2D points onto this axis, one ob-
tains the two 1D distributions shown in Fig. 4.
One can notice that in this case discriminant
analysis has almost the same discrimination
power as the quadratic decision boundary applied
to the original 2D data. By setting the decision
boundary (threshold) at 1.25 there are 14 (12
genuine and 2 imposter) palm pairs which are
misclassified. This corresponds to a 14=246 ¼
5:7% total error rate.

Finally, we would like to mention that the point
matching method described in Section 2 is not it-
erative (compared to previous methods as in
(Bookstein, 1997)), that is, Step 2(iii) in our
matching algorithm does not use a convergence
criterion. Of course, if we perform Step 2(iii) sev-
eral times, the resulting match matrix may be
slightly different (up to about 5% of the feature
points may have a different corresponding feature
point or may be rejected as outliers). This is mostly
due to thresholding the distance between corre-
sponding points (e.g., a very small rotation of one
point set can make the distance between several
pairs of corresponding points exceed the threshold
T and, as such, these points will be considered
outliers by the new match matrix). The thres-
holding also makes our point matching method
asymmetric (the final match matrix when matching
a point set A to a point set B may be slightly dif-
ferent than the one obtained when matching B to
A). However, since we use a large number of fea-
ture points, the influence of the asymmetry on the
final ðP ;DÞ matching tuple is small (the estima-
tions of the genuine and imposter distributions in
Fig. 3 were computed based on ordered palm pairs
and matching score asymmetry was within 5% and
seemed to be random).

5. Conclusions

We have presented a preliminary study of a
palmprint-based method for personal identity
verification. Our approach first extracts a set of
feature points along the main palm lines (and the
associated line orientation) from each palmprint.
Next we decide if two palmprints belong to the
same hand by classifying the scores resulting from
matching the feature sets of the two palmprints.
The estimation of the matching score distributions
for the genuine and imposter sets of palm pairs
showed that palmprints have a good discrimina-
tion power. The overlap between the genuine and
imposter distributions was found to be about 5%.
However, these results may be biased by the small
size of the data set which we have used. In this
study the overlap is due exclusively to the noise
present in the palm images or other non-linear
deformation, but if more subjects are added, one
should expect some overlap due to similar palms
of different persons. To investigate this matter
further, we plan to collect additional data and to
re-estimate the genuine and imposter distributions.
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