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Performance Assessment Through Bootstrap
Kyujin Cho, Peter Meer, Senior Member, IEEE, and Javier Cabrera

Abstract —A new performance evaluation paradigm for computer vision systems is proposed. In real situation, the complexity of the
input data and/or of the computational procedure can make traditional error propagation methods infeasible. The new approach
exploits a resampling technique recently introduced in statistics, the bootstrap. Distributions for the output variables are obtained by
perturbing the nuisance properties of the input, i.e., properties with no relevance for the output under ideal conditions. From these
bootstrap distributions, the confidence in the adequacy of the assumptions embedded into the computational procedure for the given
input is derived. As an example, the new paradigm is applied to the task of edge detection. The performance of several edge
detection methods is compared both for synthetic data and real images. The confidence in the output can be used to obtain an
edgemap independent of the gradient magnitude.

Index Terms —Performance evaluation, edge detection, bootstrap.

——————————   ✦   ——————————

1 INTRODUCTION

HE importance of performance evaluation is recognized
in the computer vision community [5]. Predicting the

performance in an image-understanding task of practical
value, however, is difficult. There are two main causes for this:

1) Real images are too complex and cannot be modeled
with the required accuracy.

2) A complete computer vision system contains several
interacting modules and implements a complicated
(often nonanalytical) relation between the input and
the output.

To obtain statistically significant performance meas-
ures for a system, a prohibitively large number of input
images should be used [8]. Even if the amount of required
computations is not an issue, it will be difficult to assure
that all these images (depicting real scenes) belong to the
same equivalence class relative to the task executed by the
system.

A widely adopted solution is to use simple inputs, per-
turbed with a known noise process. For example, in [22],
the performance of a complete feature extraction system
(gradient-based edge detection; hysteresis thresholding,
removal of the short edges, corner extraction) was evalu-
ated. An ideal linear ramp edge corrupted with i.i.d. zero
mean Gaussian noise with known variance was the input.
At the different processing steps, analytical expressions
were obtained for the output distributions. From these dis-
tributions the probabilities of detection and false alarm
were derived as performance measures. Yi et al. [32] theo-
retically analyzed the uncertainty of positional measure-

ments in images under an i.i.d. noise model with known
standard derivation. In [12], the performance of several
thinning algorithms is evaluated under a noise model de-
rived from a practical problem (degradations in bilevel
document images). In all the mentioned works, in spite of
using a simple ideal input, the output distributions are
complicated, and, to obtain analytical expressions, it is of-
ten required to have assumptions simplifying the analysis,
e.g., homogeneous noise process, independent outputs at
intermediate stages, continuous nature for the data, etc.

When real images are the input in the conventional error
propagation approach, to have a quantitative representa-
tion of the perturbation process, access to the annotated
ground-truth is required. To obtain the ground-truth, a
human operator must mark the information of interest in
the image. The output distributions (for the features of in-
terest and noninterest) are approximated and compared
with the theoretical ones obtained by perturbing the ideal
input with a known noise process [10], [11]. Ramesh et al.
optimized the free parameters of computer vision algo-
rithms based on this performance evaluation approach [23],
[24]. Comparison of the empirical distributions derived
from the annotated data with the theoretically obtained
counterparts, however, revealed significant differences.

In most performance-assessment papers published in the
literature, a trade-off can always be pointed out between an
analytically rigorous treatment of simple (synthetic) data,
and heuristics about the validity of assumptions embedded
into the algorithms applied to real images. The paradigm
proposed in this paper substitutes the analytical error-
propagation method with a numerical technique designed
with real data in mind. As will be shown, the new method
offers an informative performance measure, capturing the
adequacy of the assumptions embedded into the computa-
tional procedure for the given input data. The ground-truth
is replaced by confidences associated with all the output
components. The proposed performance evaluation tech-
nique has solid theoretical foundations in a recently intro-
duced computer-intensive resampling method in statistics,
the bootstrap.
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Bootstrap is a novel statistical tool with many possible
applications in image understanding. One of the goals of
this paper is to introduce bootstrap to the vision commu-
nity. For the reasons discussed above, we have chosen per-
formance assessment as an example of the potential of
bootstrap based techniques. Among all the low-level vision
tasks, edge detection is probably the most common one. We
have chosen performance assessment of edge detectors,
since the bootstrap-based technique can be easily con-
trasted with other approaches described in the literature.

The paper is organized as follows. Bootstrap is reviewed
in Section 2. In Section 3 and Section 4, the new perform-
ance evaluation method is introduced and illustrated with
the detection of ideal noisy step-edge. In Section 5, the
method is extended to the assessment of localization per-
formance. Results with real images are shown in Section 6.
In Section 7, place of the proposed paradigm in the toolkit
of computer vision methodologies is discussed.

2 REVIEW OF BOOTSTRAP

Let an estimate �T  � �s x  be computed from the sample x =
(x1, �, xn). The data points xi are i.i.d. from the unknown
distribution F. If F is known and s(x) has relative simple
expression, the distribution of �T  could be precisely evalu-
ated. However, the distribution F is, in general, not
known, and, in the classical methods, it is replaced by a
parametric (most often normal) distribution. The funda-
mental idea of bootstrap is to replace F by �F , the empirical
distribution of the data. Since real data may not be normally
distributed, bootstrap can improve on the classical normal
approximation.

In most applications, it is important to determine how
reliable it is to substitute the estimate �T  for the true value
of the parameter of interest T. Bootstrap, introduced by
Efron [6], is a numerical method to answer this question.
Bootstrapping is a nonparametric estimation technique of
the statistical behavior of �T  from the available sample x.

Under its simplest form, bootstrap uses the plug-in
principle.

• Construct an empirical distribution �F  from the given
sample by assigning the same probability mass 1/n to
each element xi. The distribution �F  is the estimate of
the true distribution F.

• Draw independently B bootstrap samples x*1,�, x*B

from �F  by means of random sampling with replace-

ment, e.g., x x x
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The bootstrap distribution of �T
  can be used to deter-

mine and correct the bias of �T . The bootstrap estimate of
bias is defined as
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T T                                   (2)

and the bias-corrected estimator �T bc  is

� � �
�

T T T Tbc F
 �  �


bias 2 .                        (3)

The confidence interval ( � , �T Tlo up) of T that satisfies

Pr � �ob T T T Dlo up� � ! �1 2                      (4)

can also be obtained. The distribution of �T T�  is estimated
by the bootstrap distribution � �T T
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we obtain
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Therefore, the confidence interval of T is computed as

2 2� � , � �T T T T� �

 

up lo4 9 . Other methods also exist for computing

the bootstrap confidence interval [6].
In regression problems the bootstrap distribution of �T 


can be obtained by bootstrapping the residuals. Given the
linear regression model z = XT + Z the estimate �T  mini-
mizes a positive definite function of the residual vector e =
z ��X �T . In this case, the bootstrap sample data z*b is gener-

ated by adding bootstrapped error terms ei
b
  to the pre-
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t
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For more details about the bootstrap method see [6] and [4,
pp. 489-499] for spatial data. In the next section, it is shown
that bootstrap can be exploited for performance evaluation
in computer vision.

3 THE NEW PERFORMANCE EVALUATION METHOD

The motivation behind the proposed technique are the
limitations of the traditional, analytical, error-propagation
based performance evaluation for real-data inputs. These
limitations were already mentioned at the beginning of
Section 1. Any computational procedure performed by a
computer vision system is based on assumptions about the
structure of the input image. The new method measures
(in a statistically significant way) the validity of these as-
sumptions for the given input. The input is perturbed in
the context of the employed computational procedure. It is
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important to emphasize that in the traditional error analy-
sis, the input is perturbed independently of the analyzed al-
gorithm, most often by adding noise to it.

Given an ideal input, its components can have one or
both of the following two types of properties:

• Properties of relevance for the execution of the task,
i.e., influencing the output of the system.

• Properties which do not influence the output of the
system. Extrapolating terminology from the statistical
literature, they will be called nuisance properties.

To illustrate the latter category, consider a system per-
forming edge detection by computing gradient vectors
from local supports. When an ideal step-edge along a di-
rection T is hypothesized, the support can be decomposed
into three regions: two regions having constant gray levels
(recall the input is an ideal one), and the transition be-
tween these two regions. The locations of the pixels within
the two constant regions are not important when comput-
ing the gradient, since they have the same value. Their lo-
cations are nuisance properties in the context of the edge
detection task.

Real images are not ideal inputs. The employed compu-
tational procedure, however, is designed with assumptions
derived from the ideal input. The new performance
evaluation technique exploits the changes induced in the
output by manipulating the nuisance properties of the in-
put components. For example, in edge detection if the sup-
port is noisy, the locations of the pixels in the two regions
considered as uniform become important in the computa-
tion of the gradient vector. New perturbed versions of these
regions can be generated from the available data by resam-
pling the pixels in the regions. The computational proce-
dure is then applied to the perturbed supports.

The proposed approach is equivalent with deriving from
the input image local noise processes and generating new
input samples from it, for which the task is again per-
formed. In general, the “distance” between the input and
the underlying model (assumptions) is translated into the
spread of the output components’ empirical distribution.
Thus, these distributions carry information about the reli-
ability of the output, i.e., about how stable is the result
given that the computational procedure is based on simpli-
fying assumptions.

3.1 Evaluation of Edge Detectors
Despite the enormous amount of literature on edge detec-
tion, there have been only few papers on evaluating and/or
comparing the characteristics of different edge detection
methods. Canny’s criteria combining signal-to-noise ratio
and localization [3] is commonly employed for theoretical
comparisons [3], [21], [27]. Discussions about the adequacy
of these criteria can be found in [2], [27], [28], [29]. The defi-
ciences of the edge detectors using differentiation filters are
discussed in [7].

When prior knowledge about the location of the actual
edge (the ground-truth) is available, as for synthetic data,
Pratt’s Figure of Merit [1] is often used for analytical com-
parisons [20], [26]. Kitchen and Rosenfeld [13] proposed an
edge detection evaluation technique not requiring knowl-

edge of the ideal edge’s position. The performance meas-
ures can be exploited to determine the threshold value for
the best edgemap, as in [13], [30].

Edge detectors were also analyzed analytically, with a
real input being modeled as the ideal input corrupted with
a known noise process. The theoretical output distributions
are functions of the parameters of the noise process. To
evaluate the performance of an edge detection method
based on the facet model Ramesh et al. [22] derived the
probabilities of detection and false alarm for an edge pixel.
In [25] the approach is adapted to characterize the perform-
ance of an edge detection method using the ratio between
the integrated gradient magnitudes along the gradient di-
rection and the direction orthogonal to it. Wang and Bin-
ford [31] analytically evaluated the performance of a step-
edge detection method which estimates the edge direction
by fitting a surface to the gradient magnitude values.

As will be shown below, the new performance evalua-
tion method can compare the performance of different edge
detectors for an arbitrary input image and without access to
the ground-truth. In the new technique, each pixel is as-
signed with a confidence value in belonging to an edge.
Different edge detectors can then be compared by the con-
fidences they generate. The confidence values provide an
edgemap independent of the gradient magnitude, measur-
ing only the reliability of the assumed model. While an im-
proved step-edge detector can be designed exploiting the
confidence values, the increased computational cost makes
such an operator less practical.

3.2 Edge Detection Procedure
The new performance evaluation method is first illustrated
for a gradient based edge detector. The gradient operator is
defined on a 5 � 5 neighborhood (support). The x and y de-
rivatives are computed with the corresponding weighted
differentiation filters,1 which are very similar to Canny’s
edge detector [18]. Each of the filters is a separable filter
consisting of two one-dimensional sequences for smoothing
and differentiation, respectively. The tensor product of the
two one-dimensional sequences for x derivatives is shown
in Table 1.

TABLE 1
THE 2D WEIGHTED DIFFERENTIATION FILTER FOR COMPUTING

THE X DERIVATIVE ON 5 ��5 SUPPORT

Smooth\Diff �0.1250 �0.2500 0.0000 0.2500 0.125
0.0625 �0.0078 �0.0156 0.0 0.0156 0.0078
0.2500 �0.0312 �0.0625 0.0 0.0625 0.0312
0.3750 �0.0469 �0.0938 0.0 0.0938 0.0469
0.2500 �0.0312 �0.0625 0.0 0.0625 0.0312
0.0625 �0.0078 �0.0156 0.0 0.0156 0.0078

The gradient magnitude is the L2 norm of the deriva-
tives’ values. To obtain thin edges, nonmaxima suppression
is performed in the gradient image along the direction of
the gradient [3].

1. The filters are obtained with first degree polynomials employing
Krawtchouk polynomial base.
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Fig. 1. The assumed edge model.

The edge model is that of an ideal step-edge passing
through the center of the neighborhood and oriented at T
(Fig. 1). The size of the transient region depends on T, and
the value of the pixels in it are computed from the areas
covered by each side of the edge. The two uniform regions
have values x1 and x2, respectively, and the values of the
pixels in the transient region (see inset in Fig. 1) are com-
puted as

tj = Uj(T) ¹ x1 + [1 ��Uj(T)] ¹ x2                       (8)

The area Uj can be found by simple trigonometric computa-
tions assuming the area of pixel as being unity (see [9, vol. 1,
p. 343] for an example). To conform with the representation
of an image, the pixel values are integers, i.e., rounded to
the nearest number. The symmetry properties of the model
allow us to restrict the analysis to 0$ � T � 45$. The four pos-
sible decompositions of the support are shown in Fig. 2.

          (a)                         (b)                         (c)                         (d)

Fig. 2. Decomposition of the 5 � 5 support of an edge through the win-
dow center into two uniform regions and a transition region (hashed),
function of T. (a) 0$ � T � 11.3$. (b) 11.3$ < T � 18.4$. (c) 18.4$ < T �
31.0$. (d) 31.0$ � T � 45$.

3.3 The Perturbation Strategy
Let �g  be the gradient vector computed for the given
(unperturbed) support (Fig. 3a). From the direction of �g  the
orientation of the edge, �T , is obtained. Based on the edge
model, the support can now be decomposed into two re-
gions assumed to be uniform, and the transition between
them (Fig. 3b).

                   (a)                                                               (b)

                    (c)                                                              (d)

Fig. 3. Perturbation through bootstrapping. (a) Unperturbed gradient
vector �g . (b) Decomposing the support according to the direction of
�g . (c) Resampling the uniform regions with replacements, bootstrap-
ping residuals in the transition region. (d) Perturbed gradient vector �g
.

The samples x1 = [x1(1), �, x1(p)] and x2 = [x2(1),�, x2(p)]
carry information about the uniform regions, while the
sample t = [t1, �, tr], r = 25 ��2p, about the transition region.
The gradient �g  was computed from x = (x1,t, x2).

Next the average values x x ip i
p

1
1

1 1 Ç � �
  and

x x ip i
p

2
1

1 2 Ç � �
  are calculated. The pixel values in the tran-

sition region are estimated from (8) as

� � � , , ,t U x U x j rj j j ¹ � � ¹  T T1 6 1 6
1 21 1 � .         (9)

The residuals � � , , ,ej j jt t j r �  1 � , define the noise proc-

ess for the transient region, e  e e1, ,� r .

The B independent bootstrapped supports x*b, b = 1, �,B
are the concatenations of the separately bootstrapped re-
gions (Fig. 3c). From x1 with replacement randomly select p

values, x1

b . Similarly from x2 obtain x2


b . From e with re-

placement randomly select r residuals, e*b and generate the

bootstrap sample for the transition region t tj
b

j

 


 �� ej
b , i.e.,

t*b. The effect of nonstationarity of the residuals is negligible
for the relative small support size.

From the perturbed support x x t x1 2

 
 
 


 
b b b b, ,3 8 , the gra-

dient, �g
b  is computed. The obtained bootstrap replications,
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�g
b , b = 1, �, B, yield two bootstrap distributions, one for
the magnitude and one for the direction. These bootstrap
distributions can be used to analyze the characteristics of
the gradient operator and to derive performance measures
for images.

3.4 Uncorrupted Ideal Step-Edges
The ideal input is the edge model defined in Section 3.2. In
all the experiments with synthetic data the edge has direc-
tion T and step size (x2 ��x1) = 150 � 100 = 50. Denote as �T id

the edge direction returned by the gradient operator when
the pixel values in the transition region are not quantized.
Let �T qu  be the value obtained when the values in the transi-

tion region are rounded to the nearest integer. The depend-

ence of 'T T Tid id ��3 8  on T is shown in Fig. 4 with dashed

line, while that of 'T T Tqu qu ��4 9 �with dashdot line. The

bias, due to the finite difference operators, is the largest

around T� = 27$, being about 1$, similar to what has been
already reported ([9, vol. 1, sec. 7.4.3]; [14]).

The bias can be removed using the procedure described
in Section 2. The bootstrap distribution of �T
  was generated
with B = 100 bootstrap replications, and the corrected estimate
�T bc  is computed from (3). The angular difference (T � �T bc ) is
shown with solid line in Fig. 4. As expected, it has nearly
zero mean (�0.027) across the range of T, i.e., �T bc  is an unbi-
ased estimate. Note that the bias correction was achieved
using a single input for each direction T and no further as-

sumptions. For example, when T� = 30$, the value �T qu  =

29.16$ is obtained. The mean of the bootstrap replications is

T

  = 28.24$ and the bias corrected estimate is �T bc  = 30.08$.

The bootstrap distribution of the gradient magnitude can
also be used in the analysis of the gradient operator, how-
ever, we have found it as being less informative.

3.5 Noisy Ideal Step-Edges
To verify the coverage property (6) of the derived confi-
dence intervals, 20 trials were performed for every experi-
mental condition, T. The ideal step-edges were corrupted,
with zero mean Gaussian noise having Vn = 10, and the 80
percent confidence intervals were estimated using B = 100
bootstrap replications. For a given T, the mean and median
of the upper and lower bounds of the confidence interval
were computed. They are plotted as function of the true
edge direction in Fig. 5a. The probability that the estimated
confidence interval contains the true edge direction is
shown in Fig. 5b. The mean of these probabilities is 0.8152,
which agrees closely with the expected coverage of an 80
percent confidence interval. The increase of the probabili-

ties for T > 30$ is mainly due to the increase in the size of
transition region which yields to a larger variability in the
bootstrapped supports.

    
                                                             (a)                                                                                                          (b)

Fig. 5. Coverage property. (a) The bootstrap estimated 80 percent confidence intervals for 0$ � T � 45$. The median (dashdot) and the mean
(dotted) of the upper and lower bounds, function of the true angle (dashed). (b) The probability that the confidence interval contains the true angle.

Fig. 4. Bias of the gradient operator. True angle—computed angle,
continuous data (dashed). True angle—computed angle, discrete data
(dashdot). True angle—bias corrected angle, discrete data (solid).
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Since the direction and the size of a step-edge are inde-
pendent variables, an effective edge detection performance
measure for the noise corrupted ideal model should vary

only with the signal-to-noise ratio defined as the� step size�

V n

2
.

The presence of noise occludes the bias discussed in Section
3.4, and the performance measure should not depend on T.
The bootstrap estimated standard error (1) of the gradient
direction, se�

T
, provides such a performance measure. By

assessing the quality of the estimate �T , information about
the agreement between the assumed model and the proc-
essed data can be obtained. In Fig. 6, the dependence of se�

T

on the size of step-edge and its direction, for constant sig-
nal-to-noise ratio is shown. As is desirable the variation of
se�

T
 is small. The weak dependency between the detected

edge direction and the size of noisy step-edge will be ex-
ploited for the edgemap introduced in Section 6.2.

The dependence of se�
T

 on Vn, for an edge with T�= 30$ is
shown in Fig. 7a (dashdot). The increase follows a linear
trend which somewhat levels off for larger Vn when the
edge becomes too noisy.

The perturbation strategy discussed until now is based
on the hypothesis that the edge is located at the center of
the support (see Fig. 1). The support can also be perturbed
under the nonedge hypothesis. Under the nonedge hypothe-
sis the spatial relations in a support no longer have to be
kept and the entire support is resampled with replacement.
The bootstrap estimated standard deviation of the gradient
direction under nonedge hypothesis is denoted as se�

T

non . If

the support contains a noisy ideal edge, se�
T

non  will be much
larger than se�

T
, since the spatial structure is not taken into

account in its computation. The solid curve in Fig. 7a shows
this increase. The standard deviation of the noise, Vn, has no

significant influence on se�
T

non . When the support is a noisy
uniform region (original value 100), the two standard de-
viations are very similar (Fig. 7b). Special care must be
taken when computing the characteristics of circular statis-
tics for widely spread values ([17, Sections 2.3, 2.4]).

The two standard deviations can be used to define a con-
fidence in the center pixel as being an edge pixel:

C
non

nonT

T T

T T

 �1
min � , �

max � , �

se se

se se

3 8
3 8

.                          (10)

The larger the difference between the two bootstrap esti-
mated standard deviations, a higher confidence value is
obtained in the range (0, 1).

4 COMPARISON THROUGH CONFIDENCE

The confidence defined in the previous section can be used
to compare the performance of different edge detectors for
an arbitrary input image, and without access to the ground-
truth. To introduce the technique again the noisy ideal step-
edge is employed.

    
                                                               (a)                                                                                                     (b)

Fig. 7. Bootstrapping with edge (dashdot line) and nonedge (solid line) hypotheses. The standard deviation se�
T

 and se�
T

non  function of Vn. (a) Ideal

edge, T�= 30$, step size 50. (b) Uniform region.

Fig. 6. Dependence of se�
T

 on step-size and edge direction T, for con-
stant signal-to-noise ratio 25.
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There are two distinct steps in the bootstrapping pro-
cedure. First the support is decomposed based on the
estimated edge direction. This is the initial edge detection
procedure. Given the initial edge direction, the boot-
strapped supports are generated and the bootstrapped edge
directions are computed. The confidence value is derived
from the distribution of the bootstrapped edge directions.
These two edge detectors can be separated and referred to
as the initial edge detector and the bootstrap edge detector.

For the same support, different decompositions are ob-
tained depending on the initial edge detector. Different de-
compositions result in different perturbations, i.e., different
sets of bootstrapped supports. Thus, by using the same boot-
strap edge detector for different initial edge detectors, the
comparison of the obtained confidence values becomes
meaningful. The initial and the bootstrap edge detector must
use the same edge model and the confidences produced by
the bootstrap edge detector should be continuous functions of
the edge orientation. For example, a compass edge detector
which provides only a finite set of edge direction is not ade-
quate for being a bootstrap edge detector. Given that the above
conditions are satisfied, the evaluation is independent of the
choice of bootstrap edge detector, as will be shown below.

We have compared the performance of three different
edge detectors: edge detectors employing weighted, un-
weighted differentiation filters [18], and the Nevatia and
Babu’s compass edge detector [19]. The unweighted differ-
entiation filters are also known as Savitzky-Golay filters,
and the returned gradient is the same as that of Haralick’s
facet edge detector [9, Sec. 8.6]. Nevatia and Babu’s compass
edge detector [19] is based on template matching. It provides
only six different edge directions: 0$, 30$, 60$, 90$, 120$, 150$.

First, the performance of the edge detectors employing
weighted and unweighted differentiation filters were com-
pared by using them as initial edge detectors. An ideal step-
edge of T� = 30$ orientation was corrupted with additive
Gaussian noise having standard deviation Vn. For each
noisy ideal edge, the edge direction is estimated by the two
initial edge detectors. Given the edge direction, the confi-
dence was derived by using as bootstrap edge detector either

the weighted differentiation filter (Fig. 8a) or the unweighted
differentiation filter (Fig. 8b). For each noise standard de-
viation, 100 trials were performed and both the average and
standard deviation of the obtained confidence values are
plotted in Fig. 8. Regardless of the choice of the bootstrap
edge detector, the weighted differentiation filter is more
reliable, i.e., yields slightly higher confidences. The per-
formance of the two edge detectors becomes indistinguish-
able as the signal-to-noise ratio decreases, and the structure
of the step-edge is no longer preserved. In all the subse-
quent experiments, the weighted differentiation filter was
used as the bootstrap edge detector.

The performance of Nevatia and Babu’s compass edge
detector [19] was compared to that of the weighted and un-
weighted differentiation filters. Two step-edges with orienta-
tions T�= 30$ and T�= 15$, respectively, were corrupted with
additive Gaussian noise. The average and standard errors of
the confidence values, computed for 100 trials, are shown in
Fig. 9. The weighted and unweighted differentiation filters
are more reliable for edges with T�= 15$, while for edges with
T� = 30$ Nevatia and Babu’s edge detector yields slightly
higher confidences. This is not unexpected, since a template
matching method is more robust against noise only when the
edge orientation is close to the templates being used.

5 LOCALIZATION PERFORMANCE

Accurate localization is another important aspect of an edge
detection method. To obtain thin edges a nonmaxima sup-
pression technique is applied to the gradient image [3], [16].
The local gradient magnitude maxima are declared as the
edge pixel candidates. In the new paradigm, the localiza-
tion performance is assessed by computing from the boot-
strap supports the likelihood of being an edge candidate.
The traditional nonmaxima suppression procedure is boot-
strapped. The unperturbed gradient magnitude of the pixel
is compared along the perturbed (boostrapped) gradient
direction with the two values linearly interpolated from the
unperturbed gradient magnitudes of the corresponding
neighbors. The rate of success yields L, the bootstrapped

    
                                                               (a)                                                                                                          (b)

Fig. 8. Performance comparison between weighted (solid) and unweighted (dashdot) differentiation filters for noisy ideal step-edge, function of the
noise standard deviation. The bootstrap edge detector is: (a) weighted differentiation filter, (b) unweighted differentiation filter.
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likelihood of the pixel being an edge candidate. Note that
analytical expressions of error distributions are very diffi-
cult to compute after nonmaxima suppression procedure.
Assessment of the localization performance implies infor-
mation from adjacent supports and experimental results for
images are shown in Section 6.

To extract thin edges without causing deletion of the junc-
tion pixels Lacroix [16] proposed a different likelihood meas-
ure. Lacroix quantized the gradient orientation to eight di-
rections, and defined the likelihood as the ratio between the
number of times a pixel is chosen as local maximum and the
number of times it participated in a nonmaxima suppression
process. The edge pixel candidates were determined in [16]
by contour following on the likelihood image. The direction
orthogonal to the gradient orientation defines a set of neigh-
bors. The pixel having the largest likelihood value among
these neighbors is chosen as the next one along the contour.
The contour following process is initiated with the pixels
having likelihood 1.0, and it is iterated until all the neighbors
have zero likelihood.

To derive edgemaps from the performance measures, we
used the same contour following process on the bootstrapped
likelihood image. The experimental results with real images
are shown in Section 6. The difference in the definition of the
two likelihoods can yield different edgemaps [15].

6 APPLICATIONS TO IMAGE

In this section, the technique is extended to arbitrary im-
ages and multistage computational procedures, showing its
power relative the traditional error propagation based per-
formance assessment methods.

6.1 Performance Evaluation for Real Data
The evaluation of the performance of an edge detection
method cannot be completed without using real data as
input. The same technique used for synthetic data is em-
ployed for real data. First, the initial edge detector is ap-
plied at every pixel and the gradient is estimated. Based
on the estimated gradient direction, the support of each

    
                                                          (a)                                                                                                           (b)

    
                                                           (c)                                                                                                          (d)

Fig. 9. Performance comparison between Nevatia and Babu (dashdot) and weighted/unweighted differentiation filters (solid) for noisy ideal step-
edge, function of noise standard deviation. (a) Weighted differentiation filter, T�= 30$. (b) Weighted differentiation filter, T�= 15$. (c) Unweighted
differentiation filter, T�= 30$. (d) Unweighted differentiation filter, T�= 15$.
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operator is independently perturbed, and the perturbed
gradient values are computed with the bootstrap edge de-
tector. In all experiments, the weighted differentiation filter
is used as bootstrap edge detector. From the bootstrap dis-
tribution of the gradient, the performance of the initial edge
detection method can be evaluated.

The two measures have been employed:

• CT, the confidence in the presence of the assumed
step-edge model (10), which is based solely on the lo-
cal support of the edge operator; and

• L, the bootstrapped likelihood of being an edge can-
didate, which takes into the consideration also the
supports of neighboring pixels.

Similar to Canny’s criterion combining signal-to-noise
ratio and localization [3], the combined performance meas-
ure, C,

C = CT 
 L
can be defined.

To illustrate the effectiveness of these measures, from the
well known cameraman image (Fig. 10a) four representative
5 � 5 supports were extracted (Fig. 10b). The different
measures, based on B = 25 bootstrap replications, were
computed with the weighted differentiation filter as initial
edge detector. These measures are associated with the cen-
ter pixel of the support. To compute the bootstrapped like-
lihoods, adjacent supports from the image were also used.
The trade-off in choosing B is between the accuracy of the
bootstrap procedure and the tolerated amount of computa-
tions. However, the former is already limited by the nature
of the data, and, thus, the value B = 25 should be satisfac-
tory [6, p. 52]. In our experiments we did not observe a sig-
nificant improvement in the quality of the results for larger
values of B.

The gradient magnitude, _g_, on which most edge detec-
tion methods are based, fails to distinguish between the
weak edge of the right building in the background (Support
2) and the texture of the lawn (Support 4). If the majority of
false edges of the lawn are to be removed by thresholding,
the right tall building in the background cannot be recov-
ered (see Fig. 13d). The difference, however, is well cap-
tured by the confidence, CT. Similarly, Support 3, extracted
from the tripod, yields a very large gradient magnitude, but
since the local structure is close to that of a line, a relative
low confidence was obtained. The gradient operator re-
sponds strongly for one-pixel-wide lines when they do not
pass though the center of the support. This is captured by
the low likelihood of the presence of a step-edge, L. Such
off-center lines yield artifacts in the edge image, having
always one pixel positional error (see Fig. 13d). The evalua-
tion clearly shows that the employed edge detector recovers
line features spatially biased. When a step-edge close to the
assumed model is present in the support (Supports 1 and 2)
the obtained confidence is independent of the step size of
the edge.

In Fig. 11a the confidence (CT) image derived from the
input in Fig. 10a is shown. The (0, 1) range of CT was
scaled to (0, 255), and, thus, the whiter a pixel is, the
higher the confidence values assigned to it. The confi-
dence is independent of the edge magnitude associated
with that pixel. The sky has a weak change of illumination
from left to right which, when quantized, creates small
artifact steps. The texture on the lawn has less such arti-
facts, in spite of the gradient magnitudes being much
larger. In Fig. 11b, the likelihood (L) image, and in Fig. 11c,
the image of the combined performance measure (C) are
shown.

                        (a)                                                            (b)

1 2 3 4
Unperturbed _g_ 58.5579 3.6184 24.8354 4.9954

se�
T

4.4477 5.4352 23.1378 21.6807

senon
�
T

47.1244 56.1637 49.7348 31.8553

CT 0.9056 0.9032 0.5348 0.3194
L 1.0 1.0 0.24 0.2
C 0.9056 0.9032 0.1284 0.064

                                                        (c)

Fig. 10. Examples of bootstrapped performance measures. (a) Cam-
eraman image. (b) Representative 5 � 5 supports. (c) Performance
measures for the center pixel of the supports.

                      (a)                                                             (b)

(c)

Fig. 11. Images boostrapped from Fig. 10a. (a) The confidence, CT

image. (b) The likelihood, L image. (c) The combined performance
measure, C image.
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Choosing the three edge detectors discussed in Section 4
as initial edge detector, their performance for the cameraman
image can be compared. For each pixel, the values of the
combined performance measure C were contrasted. The
number of pixels preferring one method relative to another,
i.e., achieving a larger C, indicates the degree of adequacy
of that method for the given input image. Note that the per-
formance is assessed without referring to any ground-truth
edgemap. In Fig. 12, the weighted differentiation filter is
compared to the unweighted differentiation filter. The ratio
of the number of pixels preferring either method (those
with equal C are discarded) is plotted against the value of
combined performance measure (Fig. 12a). As can be seen,
for high confidence values (C � 0.7), significantly more pix-
els prefer the weighted differentiation filter. The pixels with
higher confidence values for the weighted differentiation
filter also coincide to more edge pixels, as the two maps in
Figs. 12b and 12c show.

Similar comparisons were made for the Nevatia and
Babu edge detector versus the weighted and unweighted
differentiation filters [15]. It was concluded that for a 5 � 5
mask and the cameraman image the weighted differentiation
filter is the optimal edge detector. It is important to notice
that this conclusion applies only to the assumed step-edge
model. The performance evaluation method verifies the

validity of the model on which the edge operators are
based. For a different edge model, e.g., crease edges, the
same procedure can be repeated after defining a suitable
the perturbation strategy.

6.2 Edgemap Independent of Gradient Magnitude
The two measures, CT and L, can also be used to obtain an
edgemap independent of gradient magnitude. The confi-
dence and likelihood images represent the validity of the
assumed step-edge model at every pixel. As was shown in
Sections 3.5 and 6.1, they only depend on the local signal-
to-noise ratio. When the local structure is similar to a step-
edge, the confidence in the presence of the edge is high
with an extremely weak dependence on the orientation or
size of the edge. Thus, exploiting these two images, all the
step-edge pixels can be extracted from an image. As will be
shown below, the trade-off in having such a sensitive edge
detection tool is that any edge obeying another type of dis-
continuity profile is discarded.

The edge pixel candidates are determined by the contour
following procedure discussed in Section 5. The procedure
is applied to the likelihood image, L. The edge pixel candi-

dates are then used to mask the confidence image, CT. The
masked confidence image is hysteresis thresholded with
confidence thresholds Tc

l
T

 and Tc
h
T

. Note that these thresh-

olds have much weaker dependence on the image context
than those of gradient magnitude.

The edgemap of the cameraman image (Fig. 10) derived
from the performance measures with Tc

l
T

 = 0.7, Tc
h
T

 = 0.9 is

shown in Fig. 13a. Pixels at strong discontinuities may not

(a)

                          (b)                                                    (c)

Fig. 12. Comparison of edge detector performance for the image in
Fig. 10a. (a) Preference vs. combined performance measure for
weighted (solid) and unweighted (dashdot) differentiation filters. The
pixels which prefer for C � 0.7 the: (b) weighted, (c) unweighted differ-
entiation filter.

                        (a)                                                          (b)

                        (c)                                                           (d)

Fig. 13. Edgemaps extracted from the cameraman image. (a) Edge-
map derived from performance measures with thresholds

T Tc c
l h

T T

  0.7 0.9, . (b) Pixels with low confidence and high gradient

magnitude. (c) Combined edgemap of (a) and (b). (d) Edgemap based

on gradient magnitude with thresholds T Tg
l

g
h

  7 12, .
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be included if their support do not obey the assumed edge
model. An example for such pixels was shown as Support 3
in Fig. 10b. To build a more complete edgemap, pixels
which are not in the edgemap derived from the perform-
ance measures, but whose gradient magnitude is greater
than the 90 percentile of the gradient magnitude distribu-
tion for the entire image, are also incorporated into the
map. For the cameraman image this yields a gradient magni-
tude threshold Tg = 20, and the pixels are shown in Fig. 13b.
The combined edgemap is shown in Fig. 13c. Notice the
removal of most false edges from the lawn while preserving
the details of the background. In Fig. 13d, the traditional
Canny edgemap is shown which is obtained by manually
choosing the two gradient magnitude thresholds

T Tg
l

g
h

  7 12,4 9 as to remove most false edges from the

lawn while trying to preserve the details of the background.

6.3 Further Experimental Results
Experiments with other images were also performed. In
Fig. 14, the edge-maps derived from the performance

measures are shown along with the traditional Canny
edgemaps. The weighted differentiation filter was used as
both the initial and the bootstrapped edge detector. The
traditional edgemaps are the ones considered optimal
through setting the gradient magnitude thresholds by trial-
and-error. The comparisons of the three edge detection
methods for the different images are shown in Fig. 15. Each
graph represents a pairwise comparison of the methods.
Similar to Fig. 12a, the method yielding the top curve is to
be preferred since more pixels were associated with a
higher confidence. Contrasting of numerical values across
graphs is not meaningful. See [15] for detailed discussion of
the results.

The experiments explore the adequacy of step-edge
model for the different images. The dense edge structure
in the pentagon image (Fig. 14a) yields lower confidence
values, since the 5 � 5 support of the gradient operator is
relative large. To partially compensate for the inadequacy
of the employed support size the confidence thresholds
have to be lowered to T Tc

l
c
h

T T

  0 6 0 8. , . . The threshold

                                                            (a)                                                 (b)                                                 (c)

                                                             (d)                                                 (e)                                                (f)

                                                             (g)                                                 (h)                                                 (i)

Fig. 14. Edgemaps. Top: for the pentagon image. Middle: for the indoor image. Bottom: for the MIT image. Left: input image. Center: edgemap
derived from the performance measures. Right: traditional edgemap.
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corresponding to 90 percentile of the gradient magnitude is
Tg = 17. The obtained edgemap is shown in Fig. 14b along

with the traditional edgemap with Tg
l
 6 , Tc

h
 12  in Fig.

14c. Notice that many edges in the traditional edgemap are
more than one pixel wide. For the pentagon image the
weighted differentiation filter has clearly a better perform-
ance (Figs. 15a and 15b).

In Fig. 14d the indoor image is shown. The edgemap (Fig.
14e) was derived from the performance measures with
Tc

l
T

 0 7. ,  Tc
h
T

 0 9. , and Tg = 8, while the traditional edge-

map (Fig. 14f) with the gradient thresholds Tg
l
 1, Tc

h
 3.

The two edgemaps are comparable. Note, however, that the
same confidence thresholds are used as for the cameraman
image. For this image, the weighted differentiation filter

again shows the better performance (Figs. 15d and 15e),
but it is less striking than for the pentagon image.

The MIT image (Fig. 14g) was used in the last experi-
ment. Notice many thin lines in the image like those on the
center pillar (highlighted with the circle in Fig. 14g). These
lines are not shown in the new edgemap (Fig. 14h) obtained
with T Tc

l
c
h

T T

  0 7 0 8. , . , and Tg = 37, since the local struc-

ture does not agree with the assumed step-edge model and
low confidence values were obtained. On the other hand,
the thin lines introduce artifacts, becoming line pairs in the
traditional edgemap (Fig. 14i) obtained with Tg

l
 7 ,

Tc
h
 12 . When the edge detection methods are compared

for the MIT image, the weighted differentiation filter again
yields significantly better performance (Figs. 15g and 15h).

      
                                     (a)                                                                         (b)                                                                       (c)

      
                                      (d)                                                                       (e)                                                                        (f)

      
                                      (g)                                                                        (h)                                                                       (i)

Fig. 15. Performance comparisons. Top: for the pentagon image. Middle: for the indoor image. Bottom: for the MIT image. Left: Weighted (solid)
vs. unweighted (dashdot) differentiation filters. Middle: Weighted d.f.(solid) vs. Nevatia and Babu edge detector (dotted). Right: Unweighted
d.f.(dashdot) vs. Nevatia and Babu edge detector (dotted).
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The graphs in Fig. 15 show the superiority of the
weighted differentiation filter. The difference in perform-
ance, however, depends on the input image. Nevatia and
Babu edge detector and the unweighted differentiation
filter have similar performances for low and moderate
combined performance measure (Figs. 15c, 15f, 15i), which
is mainly due to their poor localization characteristics.

Employing the same comparison technique, the per-
formance measures can be used to select the proper support
size. Similarly experiments using the more flexible sloped
facet edge model [9, Chap. 8] can also be performed [15].

7 CONCLUSIONS

The amount of computations required to estimate the per-
formance measures is significant, about an hour on a Sparc 5
workstation. However, since each support is independently
processed, a parallel implementation is immediate. In many
applications a gradient magnitude independent edgemap
may be desirable. While applying the procedure introduced
in Section 6.2 is not computationally feasible for the entire
image, the same principle can be used locally to extract the
information of interest.

We have presented a new, numerical approach toward
performance evaluation of complex computer vision sys-
tems. While edge detection was used as an example, the
technique is the same for any computational procedure.
After the nuisance properties of the input for the given task
are identified, a perturbation strategy can be defined. The
perturbed inputs yield perturbed outputs from which
statistical characteristics are inferred. The new method
shifts the weight in performance assessment from the de-
velopment of analytical tools for simple inputs (often re-
quiring considerable sophistication) to the analysis of the
operating conditions for real data. The method can be ap-
plied to complete systems for which analytical methods
are not feasible.

Nevertheless, we consider the new paradigm for per-
formance evaluation as more of an enhancement than a
substitute for the analytical methods. Only the latter can
provide theoretical insights about simple models, but
only the former can validate these models for practical
problems.
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