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Absrract - Alrhough eforts of the entire infernational biometric 
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ro he complerely invesrigared and. eventually. srondordized. n e  
paper presents a criricol onulysir of rhe measurement of accuracy 
und performance of a biometric sysrem. Currenr approaches to rhe 
problem and procedural error have been described and cririci:ed, 
Finally, a rnethodoloa for the measurement of the accuracy qf 
biometric sysrems w,irh not-symmetric mutching./uncrion is proposed 
und discussed. 
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1. INTRODUCTION 

Biometric systems have been defined by the USA National 
Institute of Standards and Technology [ I ]  as systems 
exploiting “automated methods of recognizing a person based 
on physiological or behavioral characteristics” (biometric 
identifiers, also called feutures). Physiological biometrics is 
based on data derived from direct measurement of a body part 
(i.e. fingerprints, face, retina, iris), while behavioral 
biometrics is based on measurements and data derived from a 
human action [2] (i.e. gait and signature). 

Biometric systems are being used to verify identities and 
restrict access to buildings, computer networks, and other 
secure sites [3]. Recent global terrorism escalation is pushing 
the need for secure, fast and non-intrusive identification of 
people as a primary goal for homeland security. As commonly 
accepted, biometrics seems to be the first candidate to 
efficiently satisfy these needs. For example, by October 2004 
USA planned to control the accesses tolrrom country borders 
by means of biometric passports [4,5]. 

Personal identification has taken the form of token-based or 
knowledge-based methods, such as  secret passwords and PINS 
(Personal Identification Numbers), ID cards, keys, passes etc. 
Biometric approach completely differs from traditional 
methods since the identification is based on personal and 
unique peculiarities of individuals, which cannot be easily 
misplaced, forged, or shared [6]. 

Given that a biometric system is an identification system, 
its accuracy can be evaluated by classical techniques [7] but 
peculiarities are present. Typically, to effectively test 
biometric systems, a great number of volunteers is required or 
a large database of biometric records must be accessed [7,8 , 
91. Experiments are complex, expensive and they expose the 
data maintainer to important problems related to the security 

and privacy of the biometric records. Furthermore, the 
protocol of the experiments can directly affect system 
accuracy [9, IO] and it is not possible to resume the overall 
system performance in a single index of accuracy to simply 
compare two different biometric systems. 

This paper aims to present a critical analysis of the accuracy 
and perrormance measurement methodology of a biometric 
system and it proposes how to extend the measurement 
methodology in order to consider biometric systems that have 
a not-symmetric matching function. Section I1 presents the 
more frequently studied biometric systems in the literature and 
their peculiarities. Section 111 introduces the terms and the 
theory of the measure of accuracy of a biometric system. 
Section IV describes and criticizes current best practices as 
well as it proposes how to evaluate non-symmetric matching 
function systems into the comprehensive framework of 
accuracy evaluation. Finally, section V presents statistical 
considerations concerning the interval of confidence of the 
accuracy estimation and typical errors in setting up the 
biometrics experiments. 

11. BIOMETRIC SYSTEMS 

From the literature a biometric system bas a general 
structure. Figure I shows the components of a biometric 
system according to [IO]. First of all, a sensor acquires a 
sumplc of the user presented to the biometric system (i.e. 
fingerprint, face, iris images). The sample can be transmitted, 
eventually exploiting compressionldecompression techniques. 
Some systems store the complete sample data in the storage 
unit. Storing samples is orten deprecated in the literature due 
to privacy and security issues [ I  I ,  121. 

More correctly, a biometric system uses and stores only a 
mathematical representation of the information extracted from 
biometric samples by the signal processing module: the 
biometric feufirre. Examples are minutiae coordinates and 
iris-codes. If the extracted feature is stored (enrolled) into the 
biometric system, a template for future identification or 
verification (matching) is added. Each biometric system has a 
measure o r  the similarity between features derived from a 
presented input sample and a stored template. The measure 
produces the matching score. Hence, a matchlnon-match 
decision may be made according to whether this score exceeds 
a decision threshold or not. The term trunsuction refers to an 
user attempt to validate a claim of identity (or non-identity) by 
consecutively submitting one or more samples, as allowed by 
the system decision policy [IO]. 
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The signal processing module represents the core of the 
system and is generally composed by sub-modules which 
implement the preprocessing functions (i.e. image filtering 
and enhancement), the feature extraction and the matching 
between two features. 

Typically a biometric system can he characterized by the 
following attributes: uniqueness, universality, permanence, 
measurability, user friendliness, acceptability and 
circumvention [IO]. Uniqueness refers to the fact that a 
feature must be unique: an identical feature should not appear 
in two different people. Universality means that the feature 
type is presenUoccurs in as many people as possible. 
Unfortunately we can not assume, for example, that every 
individual has all the fingers or has both irises not damaged. 
The Permanence properly is rebated to the need that the feature 
does not change over time, or at least, it varies very slowly. 
Measurability concerns the possibility to measure the feature 
with relatively simple technical instruments. User friendliness 
requires that the measure should be easy and comfortable to he 
done, and Acceptability refers to the people’s acceptance of the 
measure in daily lives. Circumvention concerns the toughness 
to deceive the system by fraudulent methods. All these 
attributes must be taken into account designing a biometric 
system. 

Most cited biometric samples in the literature are: 
fingerprint, signature (hand-writing), facial geometry, iris, 
retina, hand geometry. vein structure, ear form, voice, DNA, 
odor (human scent), keyboard strokes and gait [2]. Each of 
them has different accuracy, cost and a different fulfillment of 
the seven attributes previously presented. 

A biometric system can work basically in two 
configurations: identification and veii fication. Identification 
means that the acquired and processed biometric feature is 
compared lo all biometric templates stored in a system. If 
there is a match, the identification is successful, and the 
corresponding user name or user ID is put in output. 
Verification means that the user enters herihis identity into the 
system (i.e. by keyboard or using a card) and a biometric 
feature is scanned. Then, the system compares the input 
feature only with the previously enrolled reference feature 
corresponding to the ID. If a match occurs, verification is 
successful. Systems that use a single biometric feature are 
defined as monomodal. When the identification is computed 
by comparing the matching values between N biometric 
features different in type with a specific policy, the system is 
called maltimodal [13]. Example of combinations such as 
facellingerprint, irislfingerprint, and faceivoice are 
particularly discussed in the literature [13-151. Many studies 
report an improvement in accuracy for multimodal systems 
with respect to systems working with single biometric features 
[14-16]. 

111. BIOMETRIC SYSTEM EVALUTATION 

The evaluation of a biometric system can be performed 
from different perspectives named technology, scenario and 

operational. In this paper we deal with the technology 
evaluation since its goal is to compare competing algorithms 
when a sensor technology has been selected [7,lO]. 

The scenario evaliiatiun aims to determine the overall 
performance o f a  complete system in a prototype or simulated 
application that models a real-world target application. Since 
each tested system has its own acquisition sensor, it will 
receive slightly different data even if we acquire samples from 
the same individuals. Test results will be repeatable only if the 
simulated scenario can be carefully controlled. The 
operational evaluation tests a complete biometric system in a 
specific application environment with a specific target 
population. In general, operational test results will not be 
repeatable. The technology evaluation compares algorithms on 
a standardized database collected by a “universal” sensor. Of 
course, performance with this database will depend upon both 
the environment and the population in which it has been 
collected. Typically to avoid malicious approaches by the 
developers, it is possible firstly to provide them only a portion 
of the sample database, and distribute actual evaluation 
samples only after the developing of the algorithm’s code. 
Testing is carried out using omine processing of the data. 
Because the database is fixed, the results of technology tests 
are repeatable. 

Figure 2 shows the most general situation in a biometric 
database: we have a different number of samples for different 
individuals. Databases for algorithms comparison are poorly 
available [ I ,  17-20] due to the fact that they are very expensive 
and they contain complete biometric samples of real 
individuals. Security and privacy expects are seriously 
involved [ 1 I ,  121. Some synthetic .databases/generators are 
available only for fingerprints [21]. 

Figure I :  Struchlre of& biometric systcm 

lndividu 

Figure 2: Gcncral samplcs SiNUBtion of a biometric dataset 

IV. ACCURACY AND PERFORMANCE INDEXES 

In the case oca technology evaliiation, the accuracy indexes 
most commonly accepted in the literature are now discussed. 
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The following definition of accuracy presents differences with 
respect lo the classical one used in metrology [22] but it is 
generally accepted in biometric systems. Accuracy of 
measurements evaluates the agreement between the result of a 
measurement and the expected value, applying the system on a 
standardized database, as described in the previous section. 

In this paper, accuracy is given by indexes evaluated using 
the concept of error: this definition is typically used in 
biometric systems. Readers often confuse this measure of 
accuracy processed on a standard database with the accuracy 
of the methodology. However, at least a second source of 
uncertainty - which affects the overall accuracy - should be 
considered the uncertainty introduced by the measurement 
process due, for example, to pressure, humidity, finger 
position, electronic noise, quantization, etc. [5 ] .  The authors 
consider this second source of uncertainty of great interest and 
it will be the goal of the further research. Moreover, taking into 
account both methodological and measurement uncertainty is 
not a trivialtask. If the extracted biometric feature comes from 
an ideal sensor obtained by an ideal collection procedure, the 
methodological uncertainty should be equal to zero. However, 
in presence of noise corrupted samples, the preferred method 
minimizes the effect of noise source on the accuracy. 

The following theory is valid for both monomodal and 
multimodal biometric systems. We can assume to have a 
sample database of identified individuals, as plotted in figure 
2. In the literature many methods considered to evaluate the 
accuracy of a biometric system implicitly assume that the 
matching function is symmetric [15, 23 and 241. Given two 
biometric features A and B and naming the matching function 
M, we have a symmetric matching function if M(A,B) = 
M(B,A). In the following we describe how to extend the 
equation for the accuracy evaluation for systems ,where we 
have M(A,B) # M(B,A). Such systems are present in the 
literature, for example as described in [25] and [26 ] .  In this 
paper, we do not comment if the symmetry is preferable to 
asymmetry in the matching function, but we will describe how 
is possible to make a fair comparison between different 
biometric systems by taking into account that issue. 

Referring again to figure 2, let’s define Ba as the j I h  sample 
of the 2” individual (i.e. a fingerprint or iris image, either 
filtered or not); T, as the template computed from B, (the 
features extracted); ni as the number of samples available for 
the ?‘ individual and, finally, N as the number of individuals 
enrolled. Let’s follow the steps to compute the accuracy 
performance of the systems defining the proper indexes. 

A .  Step I  enrolment: 

The templates T,, where i=I..N, j = l . . n i  , are computed 
from the corresponding sample Bii and stored on disk; if 
something wrong happens, an index (REJENR~LL) has to be 
increased. 
R E J ~ N R ~ ~ ~  is the rejection ratio in the enrolment phase, due to 
Fail (the algorithm declares it cannot enrol the biometric data), 
Timeout (the enrolment exceeds the maximum allowed time) 

IndividualsllW . 

a) gm for symmetnc matchings 

Figure 3: Genuinr 
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a) ims far symmetric matchings. 
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b) ims for asymmetric matchings. 

Figurc 4: Impostor Matching Scores 

and Crash (the algorithm crashes during biometric processing) 
situations [10,17]. 

E. Step 2 - A  general matching score computation: 

For symmetric matching jinctions the consuetude is as 
follows [ 171: each biometric template T, successfully created 
in the previous step is matched against the biometric sample 
Bjk ( j<Knj) .  The matching values are stored in a matrix called 
Genuine Matching Scores p s i j k  (figure 3.a). The .term 
“genuine” refers lo the fact that the matching is computed 
between samples of the same certified individual. Since the 
matrix is symmetric by definition, only the upper triangular 
matrix is computed. Each individual has its own squared gms 
matrix. 

We now propose how to include systems that have 
asymmetric matching-function into the framework proposed 
in the literature. Next section considers statistic effects on the 
estimation of the systems accuracy. 

For asymmetric matchings each biometric template T, 
successfully created in the previous step is matched against the 
biometric sample Bik ( 19k3i, k # j )  and the corresponding 
Genuine Matching Scores matrix gmsijk is stored (figure 3.b). 
The matrix is not symmetric but it is still square. Then, the 
number of matches, denoted as NGRA (Number of Genuine 
Recognition Attempts) is given by 

I ,” 

2 lil 
NG~.T.,~mM’,,d = -Z.h - 1) 

N ~ ~ , m M < l , c h  = n; hi - 1) (2) 

(1) 

where REJENnoLL = 0 (symmetric matching) 
N 

i= l  

where REJENRoll, = 0 (asymmetric matching). 
Let’s now consider the matching values of samples of 

dlffrent individuals (impostors matching). For symmetric 
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matching, each biometric template Til. i=I. .N is matched 
against the first biometric sample from different individual Bxl 
( i < K 4  and then the corresponding Impostor Mutching Scores 
imsir matrix is stored (Figure 4 4 .  Impostor matching in the 
case of asymmetric matching function is computed as follows: 
each biometric template Til, i = / . . N  is matched against the first 
biometric sample from different individual Bki ( I W ,  k # i )  
and the corresponding Impostor Mulching Scores imstk matrix 
is stored (Figure 4.b). The number of matches, denoted as 
NIRA (Number oflmpostor Recognition Attempts) is given by 

1 
2 N I R A , , M & , l  = - N ( N  - 1) 

N"<,,M8,,, = N ( N  - 1) 

(3) 

if REJENRoI.~. = 0 (symmetric matching), and 

(4) 
if REIENnoll = 0 (asymmetric matching). Higher scores of 
matching values are associated with more closely matching 
images. 

Finally, in the determination of gms and ims matrixes it is 
possible to have Fail, Timeout or Crash rejections. These 
events are respectively accumulated into REINGRA and REINlnA 
counters. It leads that gms and ims matrixes can have missing 
values. Commonly, in this case, special values are stored, i.e. 
"NULL" or negative matching values. 

C. Step 3 - Acczrrucy Indexes 

In this section we describe how to evaluate the confidence 
of the accuracy indexes, as defined in the literature, for a 
biometric system. Considering systems allowing multiple 
attempts or having multiple templates, a general definition 
defines errors of the matching algorithms considering single 
comparisons of a submitted sample against a single enrolled 
template. The rates are: False Match Rate FMR(f) and False 
Non-Match rate FNMR(f). They are functions of the threshold 
value t used to compare the matching value to make the 
decision. 

The False Match Rate is the expected probability that a 
sample will be falsely declared to match a single 
randomly-selected template valse positive). The False 
Non-Match Rate is the expected probability that a sample will 
be falsely declared not to match a template o l  the same 
measure from the same user supplying the sample vulse 
nemtivr) 191. 

"The FMR(t) and FNMR(1) curves are computed from gms 
and ims distributions for t typically ranging from 0 IO I .  Given 
a threshold 1, FMR(t) and FNMR(f) are defined as follows 
[16]: 

card{ims,,lims,, 2 t } 
NIRA 

FMR(f)  = (5) 

where curd represents the cardinality. 

The evaluation of the overall accuracy level of a biometric 
system is often evaluated by considering two error plots. The 
first is the Receiving Operating Curve (ROC), where 
(1- FNMR) is plotted as a function of FMR for all available 
values of t .  The second, and most used, is the plot of FNMR vs. 
FMR in a logarithmic chart, called the Detection Error 
Trade-off (DET) plot. Figure 5 shows patterns of the DET 
curves computed for 6 different systems [ 171. The best system 
is the one that has its DET curve below all the others. It would 
mean that, for all the values of its threshold I ,  the system yields 
the lowest FMR and FNMR with respect to the others. 
Typically a system outperforms all the others in some intervals 
of threshold 1, not for all the values. DET plots are suitable to 
compare biometric systems. 

In order to evaluate the peculiar behaviour of a selected 
system in separating the genuine from the impostor attempts, 
the distributions of the matching function values of the 
genuine population (gmssk) and of the impostor population 
(imslk) can be plotted. The smaller the overlap (the darker area 
in Figure 6 ) ,  the better the biometric system will be. If no 
overlap occurs, it means that it exists a threshold value t' 
which perfectly separates the genuine individuals from the 
impostors (ideal case). 

Other error-indexes can complete the accuracy description. 
The EER (Equal Error Rate) is often considered, and i t  is 
computed as the point where FMR(f) = FNMR(t). Score 
distributions are typically not continuous and the EER must be 
often interpolated by the quantized data [ 171. 

omn om,\ 001% B 2% I. m 
FMR 

Figure 5 :  Examplcs of DET curve 

Genuines 

0.2 0.4 0.6 0.8 
Matching Score 

Figure 6: Examplcs ofgenuine and impaslor distributions. 
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Other indexes measure the capability of the biometric 
system to acquire sample or to pruce.s.7 and enrol templates: 
performance indexes. The former is the Failure to Acquire 
Rate (FTA) and it is “the expectedpruportion of transactions 
.for which the .system i.7 unahle to capture or locate an image or 
signal ofsirfficient qualily” [IO]. The latter is named Failure to 
Enrol Rate (FER) and it represents the “expectedproportion 
uffhe population for whom the system is unahle to generate 
repeafahle templates” [IO]. Examples are: individuals that are 
unable to present the required biometric feature, samples that 
have insufficient quality at enrolment, and those who cannot 
reliably match their template. For example, it has been 
estimated that about 2%-3.5% of individuals have their 
fingerprint ridges damaged by friction during a two-year 
period [ZO]. 

In order to shorter the matching time, some systems can 
sodorganize templates into bins. The Penetration Rate (PR) is 
defined as “fhe expected proportion of the templates to be 
searched over all input samples under the rule fhat the search 
proceeds through the entire parfition regardless of whether a 
match is foims’ [IO]. Of course, if the system fails to 
recognize the proper partition of a new sample we have a 
binning error. This proportion ofmisplaced samples represents 
the Binning Error Rate (BER). 

In the literature many other indexes are present for testing 
biometric system’s performances, but unfortunately they 
depend on the envisioned system’s structure 
(identificatiodverification, fixed threshold, number of 
enrolled users and number of templates per user) [IO]. This 
issue must be carefully taken into account comparing different 
systems [9]. The most common are False Accept Rate (FAR) 
and False Reject Rate (FRR). Considering also the Binning 
Error Rate (BER) and penetration rate (PR), and if the 
acceptance depends on a single successful match, we can write 

FAR= PR x FMR x ( I  ~ FTA) (7) 
FRl=FTA+( I-FTApBER + (I-FTA)x( I-BER)xFNMR (8) 

It is worth noting that it is a non-sense to describe the system 
performance by only its FAR or FRR. The hvo indexes must 
be both provided since they depend on the fixed threshold I :  
changing I it is possible to arbitrarily reduce one of the two. 

V. CONFIDENCE OF ACCURACY ESTIMATION 

The evaluation of confidence of  the accuracy computed in 
previous sections and its relationship to the dataset size are 
now discussed. The proposed approach and definitions are 
generally used when describing a biometric system (see for 
example ref. 9). In general, “a N% confidence interval for 
parameter x consists of a lower estimate L, and an upper 
estimate U, such that the probability of the true value being 
within the interval estimated is the stated value (e.g.: P(xc[L, 
U]) = N%)” [IO]. Of course, the smaller the evaluation test 
size, the wider the confidence interval will be. 

The ‘‘size’’ of an evaluation test can be thought in terms of 
the number of volunteers involved in the testing phase and the 
number of attempts made. The criterion used to choose 

volunteers/samples will influence how accurately error rates 
can he measured. In the literature, the term “Non-self‘ is used 
in the sense of “genetically different”. It has been noted 
[27-291 that comparison of genetically identical biometric 
characteristics (for instance, between a person’s left and right 
eyes or across identical twins) yields, on average, more similar 
score distributions than comparison of genetically different 
characteristics. Consequently, such genetically similar 
comparisons could not be considered in computing the false 
match rate. 

It must he also noticed that the assumption about 
independency of all trials is not always satisfied (i.e. 
asymmetric/symmetric matching values in the matrix, 
problem related to “Nun-Self‘ samples). The alternative is to 
compromise the independence of the samples by reusing a 
subset of all the volunteers and to expect a loss of statistical 
significance [IO]. The actual consequence of not-independent 
samples in the test-database for a biometric system is not well 
understood yet [9]. 

Furthermore, performance estimates will be affected by 
both systematic errors and random errors. In biometric 
systems, by definition, random errors are due to the natural 
variation in people employed in the test, samples etc. Instead, 
systematic errors are due to bias in the test procedures, etc. For 
example, if certain types of individuals are under-represented 
in the volunteer set, this can give rise to a “bias” in the results 
[IO]. It is fundamental to reduce the bias as much as possible 
and to report it into the results of the analysis. This allow for 
further fair comparisons between experiments. 

It is interesting to note that some biometric producers state 
part-per-million (p.p.m.) errors in their systems, but errors in 
the data-collection procedures are typically considered much 
higher (due to “human errors” or factors such as iridfingertips 
illnessiinjures previously described) [9,20]. 

Dimensioning the test size, two main rules can be followed. 
They are known in the literature as the nile uf3, and the nile of 
30. The Rule of3 [30-321 addresses the question “What is the 
lowest error rate that can be statistically established with a 
given number N of independent comparisons?’. This value is 
the error rate p for which the probability of zero errors in N 
trials. is, for example, 5%. This gives p=3/N, for a 95% 
confidence level. For example, a test of 300 independent 
samples returning no errors can be said with 95% confidence 
to have an error rate 5 1% [IO]. The Rule of 30 [33] is utilized 
to determine the evaluation test size and it can be expressed as 
follows: “To he 90% confident that the true error rate is within 
+30% of the observed error rate, there must be at least 30 
errors”. So, for example, if we have 30 false non-match errors 
in 3,000 independent genuine trials, we can say with 90% 
confidence that the true error rate is between 0.7% and 1.3%. 
These rules have been derived from the binomial disfribiition 
assuming independent trials, and may be applied by 
considering the performance expectations for the evaluation. 
The two rules should he considered as over-optimistic [9]. 

Using a number of samples sufficiently large, the central 
limit theorem [34] implies that the observed error rates should 

514 



follow an approximately Gaussian (or normal) distribution. 
Under the assumption of normality, 100 * (I-a) % confidence 
bounds on the observed error rales are given by the following 
formula: 

(9) 

where: 
t; 
l i ( j )  
z( ) 

is the observed error rate and 
is the estimated variance of observed error rate [9], 
is the inverse of the standard normal cumulative 
distribution. 

For 95% confidence limits the value ~(0.975) is 1.96. 
Often this formula gives rise to negative values for the error 

rate - but negative error rates are impossible. This is due to 
non-normality of the distribution of observed error rates. 
When a case like that occurs, non-parametric methods, such as 
the bootstrap [35], can be used to obtain confidence intervals. 

Finally, it must be noted that a biometric system is not more 
accurate just because it uses a more complicated feature than 
other systems. Statements such as “iris biometrics is more 
accurate than fingerprint because its biometric feature is much 
more complicated” are not correct. Under quite general 
assumptions, in [37] has been demonstrated that the accuracy 
does not depend only on the number of degrees of freedom of 
the biometric features utilized. Of course, the accuracy 
depends on how information of the biometric features is used, 
much more than the “complexity” of the biometric features. 

VI. CONCLUSIONS 

In this paper we summarize and critically discuss the main 
issues to be taken into account for the evaluation of the 
accuracy and performance of a biometric system. The case of a 
technology evaluation has been considered according lo 
current best practices. The discussed methodology has a 
general appliance lo different samples database formats and 
we propose how to support asymmetric matching algorithms. 
Our analysis enlightens that more efforts should be done to 
analyze the accuracy of the biometric systems from a stricter 
metrological point of view. The estimation of uncertainty in 
biological and clinical measurements is a true critical point 
and will he considered with a deeper metrological approach. 
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