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Abstract

In this paper, we propose a palmprint recognition method based on eigenspace technology. By means of the

Karhunen–Loeve transform, the original palmprint images are transformed into a small set of feature space, called

‘‘eigenpalms’’, which are the eigenvectors of the training set and can represent the principle components of the

palmprints quite well. Then, the eigenpalm features are extracted by projecting a new palmprint image into the subspace

spanned by the ‘‘eigenpalms’’, and applied to palmprint recognition with a Euclidean distance classifier. Experimental

results illustrate the effectiveness of our method in terms of the recognition rate.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

There is a high demand for personal identifi-

cation and verification for reasons of security. The

traditional secure measures, passwords or ID

cards, provide only limited protection for safety

systems. Thus, they cannot meet secure and au-

tomated requirements in the modern, automated
world with an ever-growing need to authenticate

individuals in various fields. Because one�s unique
characteristics cannot be stolen, forgotten, dupli-

cated, shared or observed, biometrics-based rec-

ognition is emerging as the most reliable solution

since it deals with physiological or behavioral

characteristics, which can be used to authenticate

a person�s claim to identity or establish an identity
from a database (Jain et al., 1999; Zhang, 2000).

Compared with other biometrics technologies,

palmprint has become an important complement

to personal identification because of its advantages
such as low resolution, low cost, non-intrusiveness

and stable structure features (Duta et al., 2002;

You et al., 2002).

The palm, the inner surface of the hand between

the wrist and the fingers, consists of three parts:

the finger-root region, inside region and outside

region. There are three principle lines made by

flexing the hand and wrist in the palm, which are
usually defined as life line, heart line, and head line
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(Shu and Zhang, 1998). The previous work on

palmprint recognition focused on two aspects: (1)

extracting the principle lines and creases in the

spatial domain (Zhang and Shu, 1999; Duta et al.,

2002; You et al., 2002) and (2) transforming the

palmprint images into the frequency domain to ob-
tain the energy distribution feature (Li and Zhang,

2002). In the first approach, the lines and creases of

a palm are sometimes difficult to extract directly

from a given palmprint image with low resolution.

The recognition rates and the computational effi-

ciency are also not sufficient. In the second ap-

proach, the abundant textural details of a palm are

ignored and the extracted features are greatly af-
fected by the lighting conditions. The problems with

these two approaches suggest that new methods are

required for palmprint recognition.

The concept of an eigenspace has been widely

used in face recognition. That work shows that the

extracted ‘‘eigenfaces’’ can effectively represent the

principal components of the faces (Peng and

Zhang, 1997; Turk and Pentland, 1991). In this
paper, we find that it also offers good charac-

teristics for palmprint recognition. Based on the

Karhunen–Loeve (K–L) transform, the original

palmprint images used in training are transformed

into a small set of characteristic feature images,

called ‘‘eigenpalms’’, which are the eigenvectors of

the training set. Then, feature extraction is per-

formed by projecting a new palmprint image into
the subspace spanned by the ‘‘eigenpalms’’.

When capturing a palmprint, the position, di-

rection and stretching degree may vary from time

to time. As a result, even the palmprints from the

same palm could have a little rotation and shift.

Also the sizes of palms are different from one

another. It is necessary to align all palmprints and

normalize their sizes for further feature extraction
and matching (Li and Zhang, 2002). In our bio-

metrics research laboratory, a palmprint input

device can on-line capture palmprint images. Both

the rotation and translation are corrected by the

capture device panel, which can locate the palms

by six pillars. Subimages with a fixed size ð128�
128Þ are extracted from the captured palmprint

images ð384� 284Þ so that different palmprints are
converted into the same image size for further

processing.

The rest of this paper is organized as follows:

Section 2 presents a brief introduction to eigen-

palms. Experimental results and some conclusions

are given in Sections 3 and 4, respectively.

2. Eigenpalms: feature extraction

Usually a palmprint image is described as a

two-dimensional array ðN � NÞ. In the eigenspace
method, this can be defined as a vector of length

N 2, called a ‘‘palm vector’’. A sub palmprint image

is fixed with a resolution of 128� 128, hence a
vector can be obtained, which represents a single
point in the 16,384-dimensional space.

Since palmprints have similar structures (usu-

ally three main lines and creases), all ‘‘palm vec-

tors’’ are located in a narrow image space, thus

they can be described by a relatively low dimen-

sional space. As the most optimal orthonormal

expansion for image compression, the K–L trans-

form can represent the principle components of the
distribution of the palmprints or the eigenvectors

of the covariance matrix of the set of palmprint

images. Those eigenvectors define the subspace of

the palmprints, which are called ‘‘eigenpalms’’.

Then, each palmprint image in the training set can

be exactly represented in terms of a linear combi-

nation of the ‘‘eigenpalms’’.

Let the training samples of the palmprint im-
ages be x1; x2; . . . ; xM , where M is the number of

images in the training set. The average palmprint

image of the training set is defined by

l ¼ 1

M

XM

i¼1
xi: ð1Þ

The difference between each palmprint image and
the average image is given by ui ¼ xi � l. Then, we
can obtain the covariance matrix of fxig as fol-
lows:

C ¼ 1

M

XM

i¼1
ðxi � lÞðxi � lÞT ¼ 1

M
XX T; ð2Þ

where the matrix X ¼ ½u1u2 	 	 	uM 
. Obviously, the
matrix C is of dimensions N 2 � N 2. It is evident

that the eigenvectors of C can span an algebraic

eigenspace and provide an optimal approximation
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for those training samples in terms of the mean-

square error. However, determining the eigenvec-

tors and eigenvalues of the matrix C ðC 2 RN2�N2Þ
is an intractable task for a typical image size.

Therefore, we need to find an efficient method to
calculate the eigenvectors and eigenvalues. It is

well known that the following formula is satisfied

for the matrix C:

Cuk ¼ kkuk; ð3Þ
where uk refers to the eigenvector of the matrix C,
and kk is the correlative eigenvalue of matrix C.
In practice, the number of the training samples,

M , is relatively small. The eigenvectors ðvkÞ and
eigenvalues ðakÞ of matrix L ¼ X TX ðL 2 RM�MÞ
are much easier to calculate. Therefore, we have

X TXvk ¼ akvk; ð4Þ
and we multiply each side of the Eq. (4) by X ,

XX TðXvkÞ ¼ akðXvkÞ: ð5Þ
Then, we can get the eigenvectors of matrix C,

uk ¼ Xvk: ð6Þ
By using this method, the calculations are greatly

reduced, where U ¼ fuk; k ¼ 1; . . . ;Mg denotes the
basis vectors which correspond to the original

palmprint images and span an algebraic subspace

called unitary eigenspace of the training set. Re-

sizing each of the eigenvectors into the image

domain ðN � NÞ, we find that they are like palm-
prints in appearance and can represent the prin-
ciple characters (especially, the main lines) of the

palmprints, which are referred as ‘‘eigenpalms’’.

Fig. 1 shows some of the eigenpalms derived from

the samples in the training set.

Since each palmprint in the training set can be

represented by an eigenvector, the number of the

eigenpalms is equal to the number of the samples

in the training set. However, the theory of princi-
pal component analysis states that it does not need

to choose all of the eigenvectors as the base vectors

and just those eigenvectors which correspond to

the largest eigenvalues can represent the charac-

teristic of the training set quite well. Then the M 0

significant eigenvectors ðu0kÞ with the largest asso-
ciated eigenvalues are selected to be the compo-

nents of the eigenpalms ðU 0 ¼ fu0k; k ¼ 1; . . . ;M 0gÞ,
which can span an M 0 dimensional subspace of all

possible palmprint images. A new palmprint image

is transformed into its ‘‘eigenpalms’’ components

by the following operation:

fi ¼ U 0ðxi � lÞ ði ¼ 1; . . . ;MÞ; ð7Þ

Fig. 1. (a) Subpalmprint samples in our training set. (b) The eigenpalms derived from the above samples.
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where the weight of the projection fi ðfi 2 RM 0�1Þ
refer to the standard feature vector of each person,

and M 0 is called the feature length.

3. Experimental results

Palmprint images were collected in our labora-

tory from 191 people using our self-designed cap-

ture device. Since the two palmprints (right-hand

and left-hand) of each person are different, we

captured both and treated them as palmprints

from different people. Eight samples were cap-
tured for each palm with different rotation and

translations. Thus, a palmprint database of 382

classes was created, which included a total of

3056 ð¼ 191� 2� 8Þ images with 384� 284 pixels
in 256 gray levels. Four kinds of experiment

schemes were designed as follow: one (two, three

or four) sample(s) of each person was randomly

selected for training, and the other four samples
were used for authentication, respectively.

During the experiments, the features are ex-

tracted by using the proposed eigenspace method

with length 50, 100, 150 and 200. The weighted

Euclidean distance is used to cluster those features

(Zhu and Tan, 2000),

dk ¼
XN

i¼1

ðf ðiÞ � fkðiÞÞ2

ðskÞ2
; ð8Þ

where f is the feature vector of the unknown

palmprint, fk and sk denote the kth feature vector
and its standard deviation, and N is the feature

length.

Based on these schemes, the matching is sepa-

rately conducted and the results are listed in Table

1. A high recognition rate (99.149%) was achieved

for the fourth scheme with feature length of 100. It

is evident that the feature length can play an im-

portant role in the matching process. Long feature

lengths lead to a high recognition rate. However,

this principle only holds to a certain point as the
experimental results show that the recognition rate

remains unchanged, or even becomes worse, when

the feature length is extended further.

A further analysis of the fourth scheme was

made by calculating the standard error rates (false

acceptance rate (FAR) and the false rejection rate

(FRR)) (Zhang and Shu, 1999). Obviously, for an

effective method both rates must be as low as
possible, but they are actually antagonists and

lowering these errors is part of an intricate bal-

ancing act. For example, if you make a system

more difficult to enter for an impostor (reducing

FAR), you also make the system more difficult to

enter for a valid enrollee (i.e., FRR raised). This

process operates in the reverse sense too. For a

given system, this becomes a question of proba-
bilities, and a company deploying such a system

will generally adjust the matching threshold de-

pending on the level of security needed. For in-

stance, a bank needs a very secure system, so it

would adjust the threshold very low to reach an

FAR close to zero. However, the bank�s employees
will have to accept false rejections, and they may

have to try several times to enter the system. The
curves for the FRR and FAR of the fourth scheme

are shown in Fig. 2. When the threshold value is

Table 1

The testing results of the three matching schemes with different

feature lengths

Training

samples

Feature length

50 100 150 200

1 94.175% 95.550% 95.175% 93.128%

2 96.073% 97.186% 96.924% 95.942%

3 97.186% 98.429% 98.822% 97.971%

4 97.840% 99.149% 99.084% 98.691%

Percentage values show recognition rate. Fig. 2. The FRR and FAR of the proposed algorithm.
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set to 0.71, the palmprint recognition method can
achieve an ideal result with an FRR ¼ 1% and an
FAR ¼ 0:03%, respectively.
Compared with the approach in (Duta et al.,

2002), which used a set of feature points along the

prominent palm lines and the associated line ori-

entation of palmprint images to identify the indi-

viduals, where a matching rate about 95% was

achieved. But only 30 palmprint samples from
three persons were collected for testing. It seems

that the testing set is too small to cover the dis-

tribution of all palmprints. An average recognition

rate 91% was achieved by the technology proposed

in (You et al., 2002), which involved a hierarchical

palmprint recognition fashion. The global texture

energy features were used to guide the dynamic

selection for a small set of similar candidates from
the database at coarse level for further process-

ing. An interesting point based image matching

was performed on the selected similar patterns

at fine levels for the final confirmation. Since

multiple feature extraction methods and matching

algorithms are needed, the whole process of rec-

ognition is more complex. Nevertheless, the rec-

ognition rate of our method is more efficient, as
illustrated in Table 2.

4. Conclusions

In this paper, the eigenpalm method is devel-

oped for palmprint recognition by using the K–L

transform algorithm, which can represent the prin-
cipal components of the palmprints fairly well. The

features are extracted by projecting palmprint

images into an eigenpalms subspace. To assess the

efficiency of our method, the weighted Euclidean
distance classifier is applied. A correct recognition

rate of up to 99% can be obtained using our ap-

proach.
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Comparison of different palmprint recognition methods

Method

Feature points (Duta et al., 2002)

(Anil K. Jain)

Hierarchical identification (You et al., 2002)

(Jane You)

Eigenpalm proposed

(by authors)

Database

(samples)

30 200 3056

Features Feature points Global texture features & feature points Eigenpalms

Recognition

rate (%)

95 91 99.149
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