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Abstract

Reporting the accuracy performance of pattern recog-
nition systems (e.g., biometrics ID system) is a controver-
sial issue and perhaps an issue that is not well under-
stood [5, 7]. This work focuses on the research issues re-
lated to the oft used confidence interval metric for per-
formance evaluation. Using a biometric (fingerprint) au-
thentication system, we estimate the False Reject Rates and
False Accept Rates of the system using a real fingerprint
dataset. We also estimate confidence intervals of these er-
ror rates using a number of parametric (e.g., see [7]) and
non-parametric (e.g., bootstrapping [1, 3, 6]) methods. We
attempt to assess the accuracy of the confidence intervals
based on estimate and verify strategy applied to repetitive
random train/test splits of the dataset. Our experiments ob-
jectively verify the hypothesis that the traditional bootstrap
and parametric estimate methods are not very effective in
estimating the confidence intervals and magnitude of in-
terdependence among data may be one of the reasons for
their ineffective estimates. Further, we demonstrate that the
resampling the subsets of the data samples (inspired from
moving block bootstrap [4]) may be one way of replicating
interdependence among the data; the bootstrapping meth-
ods using such subset resampling may indeed improve the
accuracy of the estimates. Irrespective of the method of es-
timation, the results show that the (1− α)100% confidence
intervals empirically estimated from the training set cap-
ture significantly smaller than (1 − α) fraction of the esti-
mates obtained from the test set.

1. Introduction
Accuracy performance evaluation of biometrics authen-

tication or identification systems in terms of false reject rate
(FRR) and false accept rate FAR is a difficult issue. These
error rates in themselves do not mean much. What also
needs to be reported is the dataset size that is used to com-
pute these statistics. Some indication should be given of the
quality of the dataset, e.g., the conditions under which the

data were collected and a description of the subjects that
are used for acquiring the database. Finally, it should be re-
ported how accurate the estimates of the above statistics re-
ally are. All the above issues can be addressed by comput-
ing confidence intervals both on distributions and on distri-
bution parameters. In this work, we attempt understand the
practical issues related to accurate estimation of the confi-
dence intervals.

This paper is organized as follows. Section 2 introduces
terminology and confidence intervals. Sections 3 and 4 sum-
marize the methodology for estimating confidence inter-
vals using parametric and non-parametric methods. Sec-
tion 5 presents the experimental methodology used to test
the accuracies of the confidence interval estimates. We also
present the data used for the experiments and the experi-
mental results in Section 5. In Section 6, we discuss the im-
plications of our results.

2. Confidence Intervals for Error Estimates
Suppose we have a database DB of biometric samples

acquired from D biometrics (meaning, these are real-world
biometrics, B1, ..., BD) from which d samples are acquired
per biometric. The number D of biometrics Bi, i = 1, ..., D
may be larger than the number of subjects P that are used to
collect the samples, since people may have more than one
of the particular biometric (e.g., finger). In any case, the
database contains dD biometric samples, and given a bio-
metric match engine, one can compute the test score sets: a
set of genuine (match) scores X = {X1, X2, ..., XM} and
a set of imposter (mismatch) scores Y = {Y1, Y2, ..., YN}.

Matching mated pairs in DB, i.e., matching samples
from the same biometric, gives the sample match score
(genuine score) set X; matching samples in DB from dif-
ferent identities (or biometrics) gives the mismatch (im-
poster) score set Y. In this work, as a concrete example,
we focus on fingerprint databases and fingerprint matchers
to illustrate the subtleties of biometric error confidence in-
terval estimation.

A biometric match engine is in theory completely speci-
fied by its F (s), the genuine score distribution, and its G(s),
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the imposter score distribution. Equivalently, the biometric
matcher is completely specified by FRR(T ) and FAR(T ).

When estimating the FRR(T ) and FAR(T ) at some op-
erating point T = To, the immediate question is how ac-
curately these estimates are because no matter how much
data we acquire, we will never be able to estimate the FAR
and FRR with 100% accuracy. We will only be able to esti-
mate these error rates within a certain (1 − α)100% range,
or confidence interval. Here α is the probability that the true
value of the FAR or the FRR are outside the respective con-
fidence intervals. The confidence intervals are a means to
assess the accuracy of the estimates of the FAR or FRR;
they are measures of how much belief one may attribute to
the estimates. Let us first concentrate on estimating charac-
teristics of the match score distributions F . The mean is one
such characteristic of F that can be estimated from X; an-
other characteristic of F that can be estimated from X is
the value of the distribution at xo, F̂ (xo), this gives the es-
timate of FRR(T ) at T = xo. For example, the point esti-
mate of F at xo is given by

F̂ (xo) = FRR′(xo) = 1
M

∑M
i=1 1 (Xi ≤ xo)

= 1
M #( Xi ≤ xo). (1)

3. Parametric confidence intervals
Let us define Z as a binomial random variable, the num-

ber of successes in M trials with probability of success
F (xo) = Prob (X ≤ xo) (i.e., success ≡ (X ≤ xo)).
This random variable Z has mass distribution

P (Z = z) =
(

M
z

)
F (xo)z(1 − F (xo))M−z,

where z = 0, ...,M . The expectation of Z, E(Z) =
MF (xo) and the variance of Z, σ(Z) = MF (xo)(1 −
F (xo)). For large M , F̂ (x) is normally distributed, with
an estimate of the variance given by

σ̂(x) =

√
F̂ (x)(1 − F̂ (x))

M
. (2)

So, confidence intervals can be determined with percentiles
of the normal distribution, e.g., a 90% interval of confidence
is

−1.645 σ̂(x) < F̂ (x) < 1.645 σ̂(x) (3)

Estimates Ĝ(y) for the probability distribution G(x) =
Prob(Y ≤ y) using a set of mismatch scores Y can be ob-
tained in a similar fashion.

4. Non-parametric Confidence Interval Esti-
mation

Let us assume the set X can be divided into K subsets
X = {X1, ...,XK}.

A bootstrap estimate (see [2]) of a (1 − α)100% con-
fidence interval for the estimate F̂ (xo) is obtained as fol-
lows:

1. Divide the set of match scores X into K subsets X1, ...,
XK.

2. Many (B) times do:

(a) Generate a bootstrap set X� by sampling K sub-
sets with replacement from X = {X1, ...,XK}.

(b) Compute the bootstrap estimate F̂ � as

F̂ �(xo) =
1
M

∑
Xi∈X�

1 (Xi ≤ xo).

This gives the set F�(xo) = {F̂ �
k (xo), k =

1, ..., B} of B bootstrap estimates.

3. Rank the estimates in F�(xo):

F�(xo) = {F̂ �
(1)(xo) ≤ F̂ �

(2)(xo) ≤ ...

≤ F̂ �
(B)(xo)}.

4. Eliminate the bottom (α/2)100% and the top
(α/2)100% of estimates F̂ �

(k)(xo). The leftover set
of estimates F��(xo) with B′ = (1 − α)B ele-
ments gives the (1 − α)100% confidence interval for
F̂ (xo).

The bootstrap sampling implicitly assumes that the data
being sampled is i.i.d. and therefore, any violation of such
assumption would result in inaccurate confidence intervals.
In realistic (biometric) datasets, there is always significant
dependence among the data. For example, the match scores
generated from fingerprint impressions of a finger are not
independent. Similarly, the match scores of involving dif-
ferent fingers of a person may be dependent. Note that the
number and constitution of K subsets plays an important
role in the estimation of confidence interval. Depending
upon the magnitude of independence of each sample subset
(w.r.t. other sample subsets), bootstrap resampling will be
able to propagate the dependence in the data; consequently
the confidence intervals will be more realistic. In this work,
we have experimented with three different types of boot-
strap sampling. First, each match score constitutes a (sin-
gleton) subset in itself. This is conventional bootstrap. In
second case, we divide the match scores into PD subsets
such that each subset contains match scores resulting from
a single finger. We call this finger subset bootstrap. Finally,
P subsets are constructed such that each subset consists
of match scores involved with a single person only. This
method of bootstrap is referred to as person subset boot-
strap. Since the subsets in person bootstrap are relatively
more independent than those in finger subset bootstrap, we
expect that person susbset bootstrap should be able to bet-
ter estimate the FRR confidence intervals. Similarly, finger
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and person subsets should be able to estimate confidence in-
tervals better than the conventional bootstrap.

The bootstrap confidence interval estimation concepts
can be extended to the non-match scores as well in a
straightforward fashion with one exception. Since the non-
match scores involve two different fingers, it turns out that
completely independent datasets cannot constructed with-
out sacrificing portions of non-match scores. So, there is an
option of either using all of the non-match score data and
tolerating some amount of dependence among finger and
person subsets or using very little fraction of the non-match
score data while ascertaining subset data independence. In
this work, we choose the former option.

5. Experiments
As mentioned elsewhere, the source of the inaccuracies

in the error estimates of a matcher may be either inaccurate
sampling of the target population or inaccuracies in the es-
timation procedure. There is no substitute for collection of
the representative data and in order to arrive at the correct
error estimates, a carefully designed data collection proce-
dure must capture a representative sample of the biometric
data. In this work, we assume that the data collected is rep-
resentative and we attempt to compare the efficacy of dif-
ferent error estimation methods by sequestering a random
portion of the biometric data. The non-sequestered data is
first used to arrive at false positive and false negative er-
ror rate estimates and their respective confidence intervals
using (i) parametric, (ii) conventional bootstrap, (iii) fin-
ger subset bootstrap, and (iv) person subset bootstrap meth-
ods. The accuracies of these confidence interval estimates
is ascertained using the error rates estimated from the se-
questered data. Because of the limited amount of data, the
procedure of splitting the data into two independent (e.g.,
train and test) datasets is repeated.

1. Randomly split the number of IDs into two sets, A and
B, each set containing identical number of IDs.

2. Use set A to compute the FARA and FRRA confi-
dence interval estimates.

3. Use set B to compute an estimate of FARB and
FRRB .

4. Check whether FARB estimate is within the confi-
dence interval FARA and whether FRRB estimate is
within the confidence interval FRRA.

5. By repeating steps 1-4 n number of times, obtain
average estimates of probabilities Prob(FARB ∈
CI of FARA) and Prob(FRRB ∈ CI of FRRA).

We use a private data set. The data are acquired from C =
114 different fingers in 2 sessions 5 weeks apart. The sub-
jects are approximately half adult males and half adult fe-
males in the age group 22-65. In each session, for each sub-
ject, 5 prints of the left and right index finger are acquired.

Hence, the database contains a total of 1, 140 impressions,
i.e., 10 prints of 114 fingers. The number of match scores m
per finger is 90 and the number of non-match scores n per
finger is 5, 650. (M = 10, 260 and N = 644, 100.)

The results of the experiments are summarized in Fig-
ures 1, 2 and Table 1.
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Figure 1. The average probability of a test
data set FAR at a given threshold landing into
the FAR Confidence intervals predicted from
the training data using different estimation
methods for a private data set.
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Figure 2. The average probability of a test
data set FRR at a given threshold landing into
the FRR Confidence intervals predicted from
the training data using different estimation
methods for private data set.

6. Discussion
From Table 1, it is readily observed that in a realistic sit-

uation, 90% confidence intervals estimated from the train-
ing set data do not capture 90% of the estimates from the
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����������Estimate
Error

FRR (%) FAR (%)

Parametric 76.80 32.26
Regular Bootstrap 76.49 36.49
Finger Subset 39.94 23.20
Person Subset 30.90 21.15

Table 1. On the average what percentage of
times the 90% training confidence intervals
failed to capture the test data for different
methods of estimates based on a private
dataset used in our experiments (see Figs. 1
and 2)? The ideal failure rate should be 10%.

test data. This is a surprising finding since the both the train-
ing and test data are sampled from the original database. It
is also surprising that the discrepancy in the performance of
the confidence intervals is conspicuously significant.

As is usual, the performance of the FRR confidence in-
tervals is significantly inferior to the performance in the
FAR confidence intervals. One reason for this is due to a
signficantly smaller number of match samples available to
estimate FRR than the the non-match samples available to
estimate FAR. Another reason for this hiatus in performance
is due to the larger variance of the match score distribution
than in the non-match score distribution.

Indeed, the confidence intervals estimated using true
subset bootstrap methods (e.g., finger and person subset)
are significantly better than those estimated using conven-
tional bootstrap or parametric methods. This is mostly be-
cause the parametric and conventional bootstrap methods
cannot effectively model the interdependence among the
data and consequently underestimate the confidence inter-
vals.

In other words, there surely is statistical dependence
among match scores X1, X2, ... (and mismatch scores) be-
cause of the way test databases are collected. Subsequent
finger impressions are obtained by successive dabbing of
the finger on an input device. That is, given a first impres-
sion I of a finger plus an additional two impressions It and
It+∆ of the same finger the match scores Xi = s(I, It)
and Xi+1 = s(I, It+∆) are dependent. There are additional
sources responsible for the dependence of the scores that are
due to other subtleties of the collection process of test data
sets or the subject population. In general, fingerprint image
formation is a complex process and a function of many ran-
dom variables (finger pressure, finger moisture, etc.), for a
given individual many of these random variables are depen-
dent from one impression to the next.

The way the traditional bootstrap sets X� are obtained
from the original set of match scores X does not replicate

this dependence among the Xi and there is less interdepen-
dence among match (and non-match) scores in bootstrap set
X�. Therefore the bootstrap estimates X1

�, ..., XB
� have

lower variance than would be the case if the match scores X
are independent. Resampling the subsets of samples can al-
leviate this problem and typically, meaningful subset resam-
pling can replicate the data interdependence in the bootstrap
resample and facilitate the accuracy of the estimates.

Also, there is relatively smaller improvement in CI per-
formance going from finger subset to person subset. This
indicates that the person subsets model relatively less inter-
dependence among data than the finger subset. At least one
could infer that both of the subsets model similar types of
data interdependence in this particular test situation.

Note further that use of subset bootstrap results a signif-
icantly more conspicuous improvement in FRR confidence
interval performance than that in FRR confidence interval.
Due to abundance of non-match data, the FAR confidence
intervals can in general be more reliably estimated than the
FRR confidence intervals and the FAR confidence interval
estimation error is very small, irrespective of the method of
the estimation. Consequently, there is smaller scope for im-
provement in FAR confidence intervals.
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