
Methodology is like the
weather; everybody talks about it,
but nobody does anything. Most
people seem to think that effecting
proper methodology is either not
important or not possible. Au con-
traire: discerning the causes of se-
curity threats, and forecasting the
economic consequences of imple-
menting bug fixes, require strict at-
tention to experimental detail.
Failure to do so can push products
down the wrong path and subse-
quently bankrupt a company; it can
leave consumers helpless against
identity and data theft, system un-
availability, and more.

People often make security deci-
sions based on results that they read
in journals and conference proceed-
ings. Their understanding of these
results depends primarily on a clear
exposition of the method by which
experimenters did their work, typi-
cally reported in the “experimental
method” section of a research paper
or presentation.

Comprehensive and lucid
methodological explications have
at least two major benefits: they fa-
cilitate replication of reported
work, either conceptually or tan-

gibly, and they help avert experi-
mental errors—those of experi-
menters as well as those of readers.
Although actual replication is not
common in computer science,
readers nearly always replicate ex-
periments conceptually; that is,
they imagine how an experiment
might have been done. To do this
with any reasonable degree of ac-
curacy, the description of an ex-
perimental method must provide
sufficient information to prevent
readers from making erroneous as-
sumptions. In addition to helping
readers, a thorough methodologi-
cal description also aids the exper-
imenter in avoiding errors, simply
through the act of writing down
the procedure. 

A few selected issues—opera-
tional definitions, reliability, inter-
nal validity, and external valid-
ity—limited by the small space
available here, serve to illustrate
common sources of experimental
error that may be brought to one’s
attention by a written methodol-
ogy. The first two issues regard
valid measurement, and the sec-
ond two regard valid experimen-
tation. Together, they exemplify

the importance of strong method-
ology in pushing the envelope of
security.

Operational 
definitions
Dictionary definitions usually at-
tempt to impart a conceptual under-
standing; an operational definition 
additionally includes an exact 
description of how to obtain an ob-
jective value for the measured char-
acteristic. This is necessary to reduce
ambiguity—to guard against the
possibility that different experi-
menters will interpret and measure
objects in different ways. Opera-
tional definitions ensure that every-
one measures the same phenome-
non in the same way; they prevent
people from misunderstanding, for
example, what threats were actually
countered, and what results were ac-
tually achieved.

Example
Unauthorized users with access to a
legitimate password can be detected
when their keystroke-level timing
rhythms are anomalous (with re-
spect to normal). To build a system
able to recognize temporally atypi-
cal typing patterns, researchers must
decide what constitutes a timing
anomaly. If the definition is absent
or unclear, there is no way for other
experimenters to replicate or ad-
dress shortcomings in work done by
others. Lack of clarity, or undue se-
crecy, impedes the development and
comparison of diverse approaches to
mitigating the problem, in this case,
of stolen passwords. 
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T
he promise of breakthroughs in computer security—

experimental test beds, insider-detection advance-

ments, biometrics, and user interfaces that are robust

to human error—will remain empty as long as

methodological details trail the hype.
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Addressing the issue
There is no secret weapon for devis-
ing operational definitions for mea-
sures. However, the following steps
should prove helpful:

1. Identify, or conceptually define,
the characteristic of interest. 

2. Select a measuring device, such
as a tool or expert human judg-
ment. 

3. Describe the measurement pro-
cedure (or decision process)
clearly, so that variability among
repeated measurements is mini-
mized, particularly when car-
ried out by different people. If
the measure consists of deciding
whether or not an event occurs
(detection of signal) or in what
form (category of membership),
establish a criterion by which to
make the decision that puts the
event into one class or another. 

4. Test the definition (preferably
among several peers) to ensure
that it accurately reflects the con-
cept being considered, and that it
will convince potential critics.

Following the steps above, we
could operationalize a keystroke-
timing anomaly in the following
way:

1. Conceptually define keystroke-
timing anomalies as temporal la-
tencies (time intervals between
successive key presses) that hap-
pen only rarely.

2. Select a particular anomaly de-
tector as a measuring device that
is sensitive specifically to rare
events.  Simple mean and stan-
dard deviation might suffice for
this example.

3. Control measurement variability
by keeping detector parameters
constant and background condi-
tions (such as type of keyboard
and system) consistent; establish
a threshold for deciding that la-
tencies are anomalous if they are
more than, say, three standard
deviations away from the mean.

4. Ensure that each timing anomaly
detected in this manner is in fact a
rare event, by appraising the out-
come based on the decision
threshold, and by soliciting criti-
cal input from peers about
whether the definition has cap-
tured the concept. Setting the
threshold will require considera-
tion of the costs of failing to catch
an intruder, and of keeping out
authorized users who typed slop-
pily on one or more instances.

Unless we construct a descrip-
tion free of uncertainty in its inter-
pretation, what is anomalous to
one person may not be anomalous
to someone else. Lack of ambigu-
ity is the essence of an operational
definition.

Good definitions are difficult to
come by, for constructs as well as for
specific measures. One group that has
labored hard over precise definitions
is the collaborative team comprising
the IEEE Technical Committee on
Fault-Tolerant Computing and the
IFIP 10.4 Working Group on De-
pendable Computing and Fault Tol-
erance (www.dependability.org).
Their 20-year effort has culminated
in a recent article on concepts and de-
finitions—including many that are
security relevant—that sets a fine ex-
ample (see A. Avižienis et al. in the
“For further reading” sidebar).

Reliability
In the context of experimentation, a
reliable measure is one that is stable;
that is, if we repeatedly measure the
same object or event, we will consis-
tently obtain the same value (within
measurement error). Reliability,
manifested as low variability, helps us
detect significant differences between
theoretically distinct entities when
they exist; it also makes running ex-
periments less costly by requiring less
data to be collected while maintain-
ing the same statistical power. 

Example
Researchers conducted an experi-

ment to compare the timing perfor-
mance of two distributed database
transaction systems over a medium-
sized local area network. Although
the investigators calibrated the trans-
actions carefully, repeated measures
varied by an amount substantially
greater than could be accounted for
by any error in the measurement
procedure. The measurements were
not reliable enough to capture dis-
tinct transaction-timing patterns,
hence preventing fruitful compari-
son between one system and an-
other. Researchers later determined
that the wide variation in results was
due to time-of-day effects. Because
they had taken measurements at dif-
ferent times of the day, during which
the network’s background traffic
varied significantly, the uncontrolled
variation in the background traffic
made the transaction timings appear
inconsistent. When the researchers
repeated the experiment during the
same hour of the day, the outcomes
were as consistent as anticipated,
making them sufficiently reliable for
analysis purposes.

Addressing the issue
The best way to avoid unreliability is
to control for as much unwanted
variation (deviation from typical val-
ues) as possible. We can do this by
correctly using the appropriate mea-
suring instruments and procedures.
We can also use explicit checks to en-
sure adequate reliability. One such
check is called test-retest, in which
we run the same test at two different
times for the same phenomenon. In
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the transaction-timing example, re-
searchers could have done the test-
retest check at the same time on dif-
ferent weekdays, with the

expectation that traffic at a given time
of day would be largely consistent
from one weekday to the next (con-
trolling, of course, for end-of-semes-
ter or holiday variations). Another re-
liability check is a parallel-form test,
in which two closely related variants
of a measurement procedure are used,
and a consistency score is calculated
to show correlation between the two;
if the correlation is low, reliability is
suspect. A final check lies in a form of
inter-rater reliability, in which two
experimenters conduct the same ex-
periment with the expectation that at
least 90 percent of their observations
will agree.  We can find other checks
in the literature.

Next, we move our discussion
from the level of pure measurement
to explanatory studies, which seek
to discern the nature and extent of a
potential relationship between two
or more variables of interest.

Internal validity
In general, a valid experiment is logi-
cally well-grounded, and relevant to
the purpose at hand. Internal validity
concerns the extent to which the ex-
perimental outcomes are influenced
only by manipulations in the experi-
ment, and not by unanticipated or
covariant factors. Its main require-
ment is the ruling out of plausible al-
ternatives for explaining a given out-
come. Internal validity is essential for
knowing when the true cause of a
problem has been isolated, or when
the best solution for a security breach
has been identified.

Example
An experiment in user identification
attempted to discriminate among

users on the basis of their biometric,
idiosyncratic mouse activities (clicks,
movements, scrolls, and so on). Par-
ticipants browsed self-selected Web

pages while instrumented software
recorded their mouse activities into
log files. Unfortunately, the variable
of interest (mouse activity) was unex-
pectedly confounded with an extra-
neous variable (Web content). Be-
cause the particular Web content
might have influenced a user’s mouse
behavior, researchers could not dis-
criminate among users, solely and de-
finitively, with respect to individual
mousing style. Any apparent user-
identification success might have
been due either to user-specific
mouse activities, or to differences
among the Web pages that partici-
pants browsed. The experimental de-
sign did not provide enough control
over influential factors, such as Web
content, to determine whether or
not the mouse-activity biometric
would be successful (on its own) at
uniquely identifying users.

Addressing the issue
Whenever there is more than one ex-
planation for an observed experi-
mental outcome, internal validity is
jeopardized. Unwanted or unac-
counted-for influences on the out-
come of interest lead to ambiguity in
experimental results. To avoid this, it
is vital to anticipate and control as
many sources of variation in (deter-
minants of) the outcome measure as
possible. Researchers must explicitly
manipulate the most informative
variables, as well as record the values
these take, during the course of an ex-
periment. In some cases, it is also wise
to control ancillary factors, even
though they may not be of primary
interest. For instance, in a detailed ex-
periment to test the mouse-activity
biometric under different conditions,

researchers could systematically vary
Web content to see whether they
could distinguish users under certain
browsing conditions but not others. 

After the major input variables
have been accounted for, the re-
searcher must control all remaining
influences on the outcome by mak-
ing background conditions uniform
and/or by using randomization to
neutralize residual factors. In this ex-
ample, the experimenters could
have made the Web pages the same
for all participants, thus controlling
for the influence of different Web
pages that might have required a par-
ticular kind of mouse activity. Alter-
natively, the researchers could have
employed a common mouse-based
application and example task instead
of relying on user-selected Web
browsing. Keeping all factors con-
stant except for one (here, the per-
son) is the simplest approach.

A “controlled and randomized”
experimental design can be very use-
ful in showing internal validity. Con-
trol—holding all variables constant
except one or more expressly manip-
ulated variables—seeks to isolate the
effect of the input variable(s) on the
outcome. Randomization—ensur-
ing equal chances that an experimen-
tal subject or specimen is assigned to
one (or more) of the sets of influential
conditions under study—seeks to
neutralize potential sources of bias, or
systematic errors. As a consequence
of randomization, any “hidden” in-
fluences will tend to cancel out on the
whole; some will affect the outcome
by amplifying it, whereas others will
affect the outcome by damping it.
Using randomization, along with
proper control, leads to solid evi-
dence supporting the existence of spe-
cific causal relationships between vari-
ables of interest. 

External validity
External validity refers to the ability of
a study’s results to generalize to settings
beyond the circumstances of a specific
experiment. Situations in which the
characteristics of a study may (or may
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Poor experimental methodology can lead
to critical mistakes.
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not) match the characteristics of an
applied setting include measurement
procedure, background environment,
application of the manipulated condi-
tions, and the type of individual units
studied (systems, people, widgets, and
so on). Without external validity,
there is little realistic hope of accu-
rately assessing security levels, or of re-
solving security concerns that require
measurement and experimentation. 

Example
Out of convenience, designers may
be tempted to sample host or net-
work data in an ad hoc manner (or
create it artificially) for use in evalu-
ating intrusion detection systems.
However, a biased sample that con-
tains unrepresentative background
traffic, artifacts due to traffic simula-
tors or to injected malicious events,
wrong base rates, and so on will
make it difficult to reach valid con-
clusions about a detector’s effective-
ness in the wild. Researchers should
carefully compose test data that re-
flect a realistic operational profile.

Addressing the issue
We can reduce or eliminate test-data
bias through random sampling, al-
though in many security-related con-
texts, the quantity and complexity of
data may inhibit this. A general rule of
thumb is to characterize the target
domain, such as traffic on a particular
network, over a time period substan-
tially longer than that of the antici-
pated sample. Then the researcher
must ensure that the characteristics of
the data sampled over a shorter period
still match the characteristics of the
longer sample. Sometimes bias is un-
avoidable; in such cases, it may be best
to make a clear statement about what
biases arecontained in the data, so that
experimenters and practitioners can
compensate for them or simply avoid
them. For example, if intrusion base
rates are not representative of real traf-
fic, technicians can later tune their
detectors to compensate for differ-
ences between the test data and oper-
ational conditions.

Although we illustrated only the
hazard of unrepresentative samples,
any dissimilarity between experi-
mental conditions and reality—such
as measurement procedure, manipu-
lation of input variables, or back-
ground conditions—can weaken ex-
ternal validity. As a rule of thumb, it is
best to compare only “like with like,”
or those scenarios that share com-
monalities at every key juncture. 

We can glean further informa-
tion about valid and reliable mea-
surement and experimental design
from the statistics and experimental
methods literature. 

W ith the proliferation of prob-
lems such as identity theft and

cyberterrorism, stakes in security re-
search are high. We can counter these
threats by adopting a culture that con-
tinually tries to match the best prac-
tices and state of the art in experimen-
tal methodology so that we can run

valid and cost-effective security exper-
iments. This enables researchers and
companies to create next-generation
products, with the assurance that they
will be highly effective in operation. 
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